t_greene {TestDimorph} | R Documentation |
Greene t test of Sexual Dimorphism
Description
Calculation and visualization of the differences in degree sexual dimorphism between two populations using summary statistics as input.
Usage
t_greene(
x,
Pop = 1,
plot = FALSE,
colors = c("#DD5129", "#985F51", "#536D79", "#0F7BA2", "#208D98", "#319F8E", "#43B284",
"#7FB274", "#BCB264", "#FAB255"),
alternative = c("two.sided", "less", "greater"),
padjust = "none",
letters = FALSE,
digits = 4,
CI = 0.95
)
Arguments
x |
A data frame containing summary statistics. |
Pop |
Number of the column containing populations' names, Default: 1 |
plot |
Logical; if TRUE graphical matrix of p values, Default: FALSE |
colors |
color palette used in the corrplot |
alternative |
a character string specifying the alternative hypothesis, must be one of "two.sided", "greater" or "less", Default:"two.sided" |
padjust |
Method of p.value adjustment for multiple comparisons following p.adjust Default: "none". |
letters |
Logical; if TRUE returns letters for pairwise comparisons where significantly different populations are given different letters, Default: FALSE' |
digits |
Number of significant digits, Default: 4 |
CI |
confidence interval coverage takes value from 0 to 1, Default: 0.95. |
Details
The input is a data frame of summary statistics where the column containing population names is chosen by position (first by default), other columns of summary data should have specific names (case sensitive) similar to baboon.parms_df.For the visualization of pairwise comparisons using the corrplot, the rounder the image in the plot grid the lower the p-value (see the color scale for similar information). The default colors used in the corrplot are from the "MetBrewer" "Egypt" palette which is listed under the "colorblind_palettes". Different colors palettes can be selected from "RColorBrewer" package.
Value
data frame of t.test results
References
# for the t-test
Greene, David Lee. "Comparison of t-tests for differences in sexual dimorphism between populations." American Journal of Physical Anthropology 79.1 (1989): 121-125.
Relethford, John H., and Denise C. Hodges. "A statistical test for differences in sexual dimorphism between populations." American Journal of Physical Anthropology 66.1 (1985): 55-61.
#For the femur head diameter data
F. Curate, C. Umbelino, A. Perinha, C. Nogueira, A.M. Silva, E. Cunha, Sex determination from the femur in Portuguese populations with classical and machinelearning classifiers, J. Forensic Leg. Med. (2017) , doi:http://dx.doi.org/10.1016/j. jflm.2017.08.011.
O. Gulhan, Skeletal Sexing Standards of Human Remains in Turkey (PhD thesis), Cranfield University, 2017 [Dataset].
P. Timonov, A. Fasova, D. Radoinova, A.Alexandrov, D. Delev, A study of sexual dimorphism in the femur among contemporary Bulgarian population, Euras. J. Anthropol. 5 (2014) 46–53.
E.F. Kranioti, N. Vorniotakis, C. Galiatsou, M.Y. Iscan , M. Michalodimitrakis, Sex identification and software development using digital femoral head radiographs, Forensic Sci. Int. 189 (2009) 113.e1–7.
Examples
# Comparisons of femur head diameter in four populations
df <- data.frame(
Pop = c("Turkish", "Bulgarian", "Greek", "Portuguese"),
m = c(150.00, 82.00, 36.00, 34.00),
f = c(150.00, 58.00, 34.00, 24.00),
M.mu = c(49.39, 48.33, 46.99, 45.20),
F.mu = c(42.91, 42.89, 42.44, 40.90),
M.sdev = c(3.01, 2.53, 2.47, 2.00),
F.sdev = c(2.90, 2.84, 2.26, 2.90)
)
t_greene(
df,
plot = TRUE,
padjust = "none"
)