ImputeTestData {TestDataImputation} | R Documentation |
This main function imputes for missing responses using selected method
Description
This function imputes for all missing responses using the selected imputation method. Integrated scores are obtained by rounding imputed values to the closest possible response value.
Usage
ImputeTestData(
test.data,
Mvalue = "NA",
max.score = 1,
method = "LW",
round.decimal = 0
)
Arguments
test.data |
Test data set (a data frame or a matrix) containing missing responses. Missing values are coded as NA or other values (e.g., 8, 9). |
Mvalue |
Missing response indicators in the data (e.g. "NA", "8", "9", etc.). Mvalue="NA" by default. |
max.score |
The max possible response value in test data. By default max.score=1 (i.e.,binary test data). max.score = 2 if the response categories are (0, 1, 2), etc. Note: For IN and RF, the lowest response value should be zero (i.e., incorrect). |
method |
Missing response imputation methods. |
round.decimal |
The number of digits or decimal places for the imputed value. The default value is 0. |
Value
A data frame with all missing responses replaced by integrated imputed values.
References
De Ayala, R. J., Plake, B. S., & Impara, J. C. (2001). "The impact of omitted responses on the accuracy of ability estimation in item response theory." Journal of Educational Measurement, 38(3), 213-234. doi:10.1111/j.1745-3984.2001.tb01124.x.
Finch, H. (2008). "Estimation of Item Response Theory Parameters in the Presence of Missing Data." Journal of Educational Measurement, 45(3), 225-245. doi: 10.1111/j.1745-3984.2008.00062.x.
Honaker, J., King, G., & Blackwell, M. (2011). "Amelia II: A program for missing data." Journal of statistical software, 45(1), 1-47. doi: 10.18637/jss.v045.i07.
Lord, F. M. (1974). " Quick estimates of the relative efficiency of two tests as a function of ability level." Journal of Educational Measurement, 11(4), 247-254. doi: 10.1111/j.1745-3984.1974.tb00996.x.
Mislevy, R. J., & Wu, P. K. (1996). " Missing responses and IRT ability estimation: Omits, choice, time limits, and adaptive testing. " ETS Research Report Series, 1996(2), i-36. doi: 10.1002/j.2333-8504.1996.tb01708.x.
Pohl, S., Gräfe, L., & Rose, N. (2014). "Dealing with omitted and not-reached items in competence tests evaluating approaches accounting for missing responses in item response theory models. " Educational and Psychological Measurement, 74(3), 423-452. doi: 10.1177/0013164413504926.
Sijtsma, K., & Van der Ark, L. A. (2003). "Investigation and treatment of missing item scores in test and questionnaire data." Multivariate Behavioral Research, 38(4), 505-528. doi: 10.1207/s15327906mbr3804_4.
Van Buuren, S., & Groothuis-Oudshoorn, K. (2011). "mice: Multivariate imputation by chained equations in R." Journal of statistical software, 45(1), 1-67. DOI: 10.18637/jss.v045.i03.
Examples
ImputeTestData(test.data, Mvalue="NA",max.score=1, method ="TW",round.decimal=0)