maxTinftyCor_SD {TestCor} | R Documentation |
Multiple testing method of Drton & Perlman (2007) for correlations, with stepdown procedure.
Description
Multiple testing method based on the evaluation of quantile by simulation of observations from the asymptotic distribution (Drton & Perlman (2007)), with stepdown procedure.
Usage
maxTinftyCor_SD(
data,
alpha = 0.05,
stat_test = "empirical",
Nboot = 1000,
OmegaChap = covDcorNorm(cor(data), stat_test),
vect = FALSE,
logical = TRUE,
arr.ind = FALSE
)
Arguments
data |
matrix of observations |
alpha |
level of multiple testing |
stat_test |
4 test statistics are available:
|
Nboot |
number of iterations for Monte-Carlo quantile evaluation |
OmegaChap |
matrix of covariance of test statistics; optional, useful for oracle estimation and step-down |
vect |
if TRUE returns a vector of TRUE/FALSE values, corresponding to |
logical |
if TRUE, returns either a vector or a matrix where each element is equal to TRUE if the corresponding null hypothesis is rejected, and to FALSE if it is not rejected
if FALSE, returns a list of successive p-values : element [[i+1]] of the list giving the p-values evaluated on the non-rejected hypothesis at step [[i]]; p-values are either as a vector or a list depending on |
arr.ind |
if TRUE, returns the indexes of the significant correlations, with respect to level alpha |
Value
Returns
logicals, equal to TRUE if the corresponding element of the statistic vector is rejected, as a vector or a matrix depending of the value of
vect
,an array containing indexes
\lbrace(i,j),\,i<j\rbrace
for which correlation between variablesi
andj
is significant, ifarr.ind=TRUE
.
References
Drton, M., & Perlman, M. D. (2007). Multiple testing and error control in Gaussian graphical model selection. Statistical Science, 22(3), 430-449.
Roux, M. (2018). Graph inference by multiple testing with application to Neuroimaging, Ph.D., Université Grenoble Alpes, France, https://tel.archives-ouvertes.fr/tel-01971574v1.
See Also
ApplyFwerCor, maxTinftyCor
Examples
n <- 100
p <- 10
corr_theo <- diag(1,p)
corr_theo[1,3] <- 0.5
corr_theo[3,1] <- 0.5
data <- MASS::mvrnorm(n,rep(0,p),corr_theo)
alpha <- 0.05
# significant correlations:
maxTinftyCor_SD(data,alpha,stat_test='empirical', arr.ind=TRUE)
# successive p-values
res <- maxTinftyCor_SD(data,stat_test='empirical', logical=FALSE)
lapply(res,FUN=function(x){round(x,2)})
# succesive rejections
lapply(res,FUN=function(x){whichCor(x<alpha)})