SimuFwer {TestCor} | R Documentation |
Simulates Gaussian data with a given correlation matrix and applies a FWER controlling procedure on the correlations.
Description
Simulates Gaussian data with a given correlation matrix and applies a FWER controlling procedure on the correlations.
Usage
SimuFwer(
corr_theo,
n = 100,
Nsimu = 1,
alpha = 0.05,
stat_test = "empirical",
method = "Sidak",
Nboot = 1000,
stepdown = TRUE,
seed = NULL
)
Arguments
corr_theo |
the correlation matrix of Gaussien data simulated |
n |
sample size |
Nsimu |
number of simulations |
alpha |
level of multiple testing |
stat_test |
|
method |
choice between 'Bonferroni', 'Sidak', 'BootRW', 'MaxTinfty' |
Nboot |
number of iterations for Monte-Carlo of bootstrap quantile evaluation |
stepdown |
logical, if TRUE a stepdown procedure is applied |
seed |
seed for the Gaussian simulations |
Value
Returns a line vector containing estimated values for fwer, fdr, sensitivity, specificity and accuracy.
References
Bonferroni, C. E. (1935). Il calcolo delle assicurazioni su gruppi di teste. Studi in onore del professore salvatore ortu carboni, 13-60.
Drton, M., & Perlman, M. D. (2007). Multiple testing and error control in Gaussian graphical model selection. Statistical Science, 22(3), 430-449.
Romano, J. P., & Wolf, M. (2005). Exact and approximate stepdown methods for multiple hypothesis testing. Journal of the American Statistical Association, 100(469), 94-108.
Roux, M. (2018). Graph inference by multiple testing with application to Neuroimaging, Ph.D., Université Grenoble Alpes, France, https://tel.archives-ouvertes.fr/tel-01971574v1.
Westfall, P.H. & Young, S. (1993) Resampling-based multiple testing: Examples and methods for p-value adjustment, John Wiley & Sons, vol. 279.
See Also
ApplyFwerCor, SimuFwer_oracle, SimuFdr
Examples
Nsimu <- 1000
n <- 100
p <- 10
corr_theo <- diag(1,p)
corr_theo[1,3] <- 0.5
corr_theo[3,1] <- 0.5
alpha <- 0.05
SimuFwer(corr_theo,n,Nsimu,alpha,stat_test='empirical',method='Bonferroni',stepdown=FALSE)