ApplyFwerCor {TestCor}R Documentation

Applies multiple testing procedures controlling (asymptotically) the FWER for tests on a correlation matrix.

Description

Applies multiple testing procedures controlling (asymptotically) the FWER for tests on a correlation matrix. Methods are described in Chapter 5 of Roux (2018).

Usage

ApplyFwerCor(
  data,
  alpha = NULL,
  stat_test = "empirical",
  method = "Sidak",
  Nboot = 1000,
  stepdown = TRUE,
  vect = FALSE,
  logical = stepdown,
  arr.ind = FALSE
)

Arguments

data

matrix of observations

alpha

level of multiple testing (used if logical=TRUE)

stat_test
'empirical'

\sqrt{n}*abs(corr)

'fisher'

\sqrt{n-3}*1/2*\log( (1+corr)/(1-corr) )

'student'

\sqrt{n-2}*abs(corr)/\sqrt(1-corr^2)

'2nd.order'

\sqrt{n}*mean(Y)/sd(Y) with Y=(X_i-mean(X_i))(X_j-mean(X_j))

method

choice between 'Bonferroni', 'Sidak', 'BootRW', 'MaxTinfty'

Nboot

number of iterations for Monte-Carlo of bootstrap quantile evaluation

stepdown

logical, if TRUE a stepdown procedure is applied

vect

if TRUE returns a vector of adjusted p-values, corresponding to vectorize(cor(data)); if FALSE, returns an array containing the adjusted p-values for each entry of the correlation matrix

logical

if TRUE, returns either a vector or a matrix where each element is equal to TRUE if the corresponding null hypothesis is rejected, and to FALSE if it is not rejected if stepdown=TRUE and logical=FALSE, returns a list of successive p-values.

arr.ind

if TRUE, returns the indexes of the significant correlations, with repspect to level alpha

Value

Returns either

References

Bonferroni, C. E. (1935). Il calcolo delle assicurazioni su gruppi di teste. Studi in onore del professore salvatore ortu carboni, 13-60.

Drton, M., & Perlman, M. D. (2007). Multiple testing and error control in Gaussian graphical model selection. Statistical Science, 22(3), 430-449.

Romano, J. P., & Wolf, M. (2005). Exact and approximate stepdown methods for multiple hypothesis testing. Journal of the American Statistical Association, 100(469), 94-108.

Roux, M. (2018). Graph inference by multiple testing with application to Neuroimaging, Ph.D., Université Grenoble Alpes, France, https://tel.archives-ouvertes.fr/tel-01971574v1.

Šidák, Z. (1967). Rectangular confidence regions for the means of multivariate normal distributions. Journal of the American Statistical Association, 62(318), 626-633.

See Also

ApplyFwerCor_SD, ApplyFdrCor

BonferroniCor, SidakCor, BootRWCor, maxTinftyCor

BonferroniCor_SD, SidakCor_SD, BootRWCor_SD, maxTinftyCor_SD

Examples

n <- 100
p <- 10
corr_theo <- diag(1,p)
corr_theo[1,3] <- 0.5
corr_theo[3,1] <- 0.5
data <- MASS::mvrnorm(n,rep(0,p),corr_theo)
# adjusted p-values
(res <- ApplyFwerCor(data,stat_test='empirical',method='Bonferroni',stepdown=FALSE))
# significant correlations, level alpha:
alpha <- 0.05
whichCor(res<alpha)

[Package TestCor version 0.0.2.2 Index]