ApplyFdrCor {TestCor} | R Documentation |
Applies multiple testing procedures built to control (asymptotically) the FDR for correlation testing.
Description
Applies multiple testing procedures built to control (asymptotically) the FDR for correlation testing. Some have no theoretical proofs for tests on a correlation matrix.
Usage
ApplyFdrCor(
data,
alpha = 0.05,
stat_test = "empirical",
method = "LCTnorm",
Nboot = 1000,
vect = FALSE,
arr.ind = FALSE
)
Arguments
data |
matrix of observations |
alpha |
level of multiple testing |
stat_test |
|
method |
choice between 'LCTnorm' and 'LCTboot' developped by Cai & Liu (2016), 'BH', traditional Benjamini-Hochberg's procedure Benjamini & Hochberg (1995)'s and 'BHboot', Benjamini-Hochberg (1995)'s procedure with bootstrap evaluation of p-values |
Nboot |
number of iterations for bootstrap p-values evaluation |
vect |
if TRUE returns a vector of TRUE/FALSE values, corresponding to |
arr.ind |
if TRUE, returns the indexes of the significant correlations, with repspect to level alpha |
Value
Returns either
logicals indicating if the corresponding correlation is significant, as a vector or a matrix depending on
vect
,an array containing indexes
\lbrace(i,j),\,i<j\rbrace
for which correlation between variablesi
andj
is significant, ifarr.ind=TRUE
.
References
Benjamini, Y., & Hochberg, Y. (1995). Controlling the false discovery rate: a practical and powerful approach to multiple testing. Journal of the royal statistical society. Series B (Methodological), 289-300.
Cai, T. T., & Liu, W. (2016). Large-scale multiple testing of correlations. Journal of the American Statistical Association, 111(513), 229-240.
Roux, M. (2018). Graph inference by multiple testing with application to Neuroimaging, Ph.D., Université Grenoble Alpes, France, https://tel.archives-ouvertes.fr/tel-01971574v1.
See Also
ApplyFwerCor
LCTnorm, LCTboot, BHCor, BHBootCor
Examples
n <- 100
p <- 10
corr_theo <- diag(1,p)
corr_theo[1,3] <- 0.5
corr_theo[3,1] <- 0.5
data <- MASS::mvrnorm(n,rep(0,p),corr_theo)
res <- ApplyFdrCor(data,stat_test='empirical',method='LCTnorm')
# significant correlations, level alpha:
alpha <- 0.05
whichCor(res<alpha)