SORM {TesiproV} | R Documentation |
Reliability Analysis at Biberach University of applied sciences
Description
# S. Marelli, and B. Sudret, UQLab: A framework for uncertainty quantification in Matlab, Proc. 2nd Int. Conf. on Vulnerability, Risk Analysis and Management (ICVRAM2014), Liverpool (United Kingdom), 2014, 2554-2563. S. Lacaze and S. Missoum, CODES: A Toolbox For Computational Design, Version 1.0, 2015, URL: www.codes.arizona.edu/toolbox. X. Z. Wu, Implementing statistical fitting and reliability analysis for geotechnical engineering problems in R. Georisk: Assessment and Management of Risk for Engineered Systems and Geohazards, 2017, 11.2: 173-188.
Usage
SORM(lsf, lDistr, debug.level = 0)
Arguments
lsf |
objective function with limit state function in form of function(x) x[1]+x[2]... |
lDistr |
list ob distribiutions regarding the distribution object of TesiproV |
debug.level |
If 0 no additional info if 2 high output during calculation |
Value
The results will be provided within a list with the following objects. Acess them with "$"-accessor
beta ... HasoferLind Beta Index
pf ... probablity of failure
u_points ... solution points
dy ... gradients
Author(s)
(C) 2021 - T. Feiri, K. Nille-Hauf, M. Ricker - Hochschule Biberach, Institut fuer Konstruktiven Ingenieurbau
References
Breitung, K. (1989). Asymptotic approximations for probability integrals. Probabilistic Engineering Mechanics 4(4), 187–190. 9, 10
Cai, G. Q. and I. Elishakoff (1994). Refined second-order reliability analysis. Structural Safety 14(4), 267–276. 9, 10
Hohenbichler, M., S. Gollwitzer, W. Kruse, and R. Rackwitz (1987). New light on first- and second order reliability methods. Structural Safety 4, 267–284. 10
Tvedt, L. (1990). Distribution of quadratic forms in normal space – Applications to structural reliability. Journal of Engineering Mechanics 116(6), 1183–1197. 10