fit_continuous_tucker {TensorComplete} | R Documentation |
Signal tensor estimation from a noisy and incomplete data tensor based on the Tucker model.
Description
Estimate a signal tensor from a noisy and incomplete data tensor using the Tucker model.
Usage
fit_continuous_tucker(ttnsr,r,alpha = TRUE)
Arguments
ttnsr |
A given (possibly noisy and incomplete) data tensor. |
r |
A rank to be fitted (Tucker rank). |
alpha |
A signal level
|
Value
A list containing the following:
C
- An estimated core tensor.
A
- Estimated factor matrices.
iteration
- The number of iterations.
cost
- Log-likelihood value at each iteration.
Examples
# Latent parameters
library(tensorregress)
alpha = 10
A_1 = matrix(runif(10*2,min=-1,max=1),nrow = 10)
A_2 = matrix(runif(10*2,min=-1,max=1),nrow = 10)
A_3 = matrix(runif(10*2,min=-1,max=1),nrow = 10)
C = as.tensor(array(runif(2^3,min=-1,max=1),dim = c(2,2,2)))
theta = ttm(ttm(ttm(C,A_1,1),A_2,2),A_3,3)@data
theta = alpha*theta/max(abs(theta))
adj = mean(theta)
theta = theta-adj
omega = c(-0.2,0.2)+adj
# Observed tensor
ttnsr <- realization(theta,omega)@data
# Estimation of parameters
continuous_est = fit_continuous_tucker(ttnsr,c(2,2,2),alpha = 10)
[Package TensorComplete version 0.2.0 Index]