FitGamma {Temporal} | R Documentation |
Gamma Distribution Parameter Estimation
Description
Estimates parameters for gamma event times subject to non-informative
right censoring. The gamma distribution is parameterized in terms
of the shape \alpha
and rate \lambda
:
f(t) = \frac{\lambda}{\Gamma(\alpha)}(\lambda t)^{\alpha-1}e^{-\lambda t}, t>0
Usage
FitGamma(
data,
eps = 1e-06,
init = list(),
maxit = 10,
report = FALSE,
sig = 0.05,
status_name = "status",
tau = NULL,
time_name = "time"
)
Arguments
data |
Data.frame. |
eps |
Tolerance for Newton-Raphson iterations. |
init |
List with initial values for the 'shape' |
maxit |
Maximum number of NR iterations. |
report |
Report fitting progress? |
sig |
Significance level, for CIs. |
status_name |
Name of the status indicator, 1 if observed, 0 if censored. |
tau |
Optional truncation times for calculating RMSTs. |
time_name |
Name of column containing the time to event. |
Value
An object of class fit
containing the following:
- Parameters
The estimated shape
\alpha
and rate\lambda
.- Information
The observed information matrix.
- Outcome
The fitted mean, median, and variance.
- RMST
The estimated RMSTs, if tau was specified.
Examples
# Generate Gamma data with 20% censoring.
data <- GenData(n = 1e3, dist = "gamma", theta = c(2, 2), p = 0.2)
# Estimate parameters.
fit <- FitParaSurv(data, dist = "gamma")