pGTS {TempStable} | R Documentation |
Cumulative probability function of the generalized classical tempered stable (GTS) distribution
Description
The cumulative probability distribution function (CDF) of the generalized classical tempered stable distribution.
Usage
pGTS(
q,
alphap = NULL,
alpham = NULL,
deltap = NULL,
deltam = NULL,
lambdap = NULL,
lambdam = NULL,
mu = NULL,
theta = NULL,
dens_method = "FFT",
a = -40,
b = 40,
nf = 2048,
...
)
Arguments
q |
A numeric vector of quantiles. |
alphap , alpham |
Stability parameter. A real number between 0 and 2. |
deltap |
Scale parameter for the right tail. A real number > 0. |
deltam |
Scale parameter for the left tail. A real number > 0. |
lambdap |
Tempering parameter for the right tail. A real number > 0. |
lambdam |
Tempering parameter for the left tail. A real number > 0. |
mu |
A location parameter, any real number. |
theta |
Parameters stacked as a vector. |
dens_method |
A method to get the density function. Here, only "FFT" is available. |
a |
Starting point of FFT, if |
b |
Ending point of FFT, if |
nf |
Pieces the transformation is divided in. Limited to power-of-two size. |
... |
Possibility to modify |
Details
theta
denotes the parameter vector (alphap, alpham, deltap,
deltam, lambdap, lambdam, mu)
. Either provide the parameters individually OR
provide theta
.
The function integrates the PDF numerically with integrate()
.
Value
As q
is a numeric vector, the return value is also a numeric
vector of probabilities.
See Also
See also the dGTS()
density-function.
Examples
x <- seq(-1,1,1)
y <- pGTS(x,0.5,1.5,1,1,1,1,1)