charMTS {TempStable} | R Documentation |
Characteristic function of the modified tempered stable distribution
Description
Theoretical characteristic function (CF) of the modified tempered stable distribution.
Usage
charMTS(
t,
alpha = NULL,
delta = NULL,
lambdap = NULL,
lambdam = NULL,
mu = NULL,
theta = NULL,
functionOrigin = "kim08"
)
Arguments
t |
A vector of real numbers where the CF is evaluated. |
alpha |
Stability parameter. A real number between 0 and 2. |
delta |
Scale parameter. A real number > 0. |
lambdap , lambdam |
Tempering parameter. A real number > 0. |
mu |
A location parameter, any real number. |
theta |
Parameters stacked as a vector. |
functionOrigin |
A string. Either "kim09", "rachev11" or "kim08". Default is "kim08". |
Details
theta
denotes the parameter vector (alpha, delta,
lambdap, lambdam, mu)
. Either provide the parameters individually OR
provide theta
. Characteristic function shown here is from Kim et al.
(2008).
\varphi_{MTS}(t;\theta):=
E_{\theta}\left[\mathrm{e}^{\mathrm{i}tX}\right]=
\exp\left(\mathrm{i}t\mu+G_R\left(t;\alpha,\delta,\lambda_+,\lambda_-\right)
+G_R\left(t;\alpha,\delta,\lambda_+,\lambda_-\right)\right),
where
\left. G_R\left(t;\alpha,\delta,\lambda_+,\lambda_-\right)=
\frac{\sqrt{\pi}\delta\Gamma(-\frac{\alpha}{2})}
{2^{\frac{\alpha+3}{2}}}\left((\lambda_+^{2}+t^{2})^{\frac{\alpha}{2}}
-\lambda_+^{\alpha}+(\lambda_-^{2}+t^{2})^{\frac{\alpha}{2}}
-\lambda_-^{\alpha} \right)\right.\\
\left. G_I\left(t;\alpha,\delta,\lambda_+,\lambda_-\right)=
\frac{\mathrm{i}t\delta\Gamma(\frac{1-\alpha}{2})}
{2^{\frac{\alpha+1}{2}}}
\left(\lambda_+^{\alpha-1}
F\left(1,\frac{1-\alpha}{2};\frac{3}{2};-\frac{t^2}{\lambda_+^2}\right)
\right. \right. \\
\left. \left. -\lambda_-^{\alpha-1}
F\left(1,\frac{1-\alpha}{2};\frac{3}{2};-\frac{t^2}{\lambda_-^2}\right)
\right)\right.
F
is the hypergeometric function.
Origin of functions
Since the parameterisation can be different for this
characteristic function in different approaches, the respective approach can
be selected with functionOrigin
. For the estimation function
TemperedEstim
and therefore also the Monte Carlo function
TemperedEstim_Simulation
and the calculation of the density function
dMTS
only the approach of Kim et al. (2008) or Rachev et al.
(2011) can be selected. If you want to use the approach of Kim et al. (2009)
for these functions, you have to clone the package from GitHub and adapt the
functions accordingly.
- kim09
From Kim et al. (2009) 'The modified tempered stable distribution, GARCH-models and option pricing'. Here
alpha
is in (-Inf,1) except0.5
.- kim08
From Kim et al. (2008) 'Financial market models with Levy processes and time-varying volatility'. Without further coding, this is the selected function for estimation function from this package.
- rachev11
From Rachev et al. (2011) 'Financial Models with Levy Processes and time-varying volatility'. Similar to
kim08
Value
The CF of the the modified tempered stable distribution.
References
Kim, Y. S.; Rachev, S. T.; Bianchi, M. L. & Fabozzi, F. J. (2008), 'Financial market models with lévy processes and time-varying volatility' doi:10.1016/j.jbankfin.2007.11.004
Kim, Y. S.; Rachev, S. T.; Bianchi, M. L. & Fabozzi, F. J. (2009), 'A New Tempered Stable Distribution and Its Application to Finance' doi:10.1007/978-3-7908-2050-8_5
Rachev, S. T.; Kim, Y. S.; Bianchi, M. L. & Fabozzi, F. J. (2011), 'Financial models with Lévy processes and volatility clustering' doi:10.1002/9781118268070
Examples
x <- seq(-5,5,0.1)
y <- charMTS(x, 0.5,1,1,1,0)