charGTS {TempStable} | R Documentation |
Characteristic function of the generalized classical tempered stable (GTS) distribution.
Description
Theoretical characteristic function (CF) of the generalized classical tempered stable distribution. See Rachev et al. (2011) for details. The GTS is a more generalized version of the CTS charCTS, as alpha = alphap = alpham for CTS. The characteristic function is given - with a small adjustment - by Rachev et al. (2011):
Usage
charGTS(
t,
alphap = NULL,
alpham = NULL,
deltap = NULL,
deltam = NULL,
lambdap = NULL,
lambdam = NULL,
mu = NULL,
theta = NULL
)
Arguments
t |
A vector of real numbers where the CF is evaluated. |
alphap , alpham |
Stability parameter. A real number between 0 and 2. |
deltap , deltam |
Scale parameter. A real number > 0. |
lambdap , lambdam |
Tempering parameter. A real number > 0. |
mu |
A location parameter, any real number. |
theta |
Parameters stacked as a vector. |
Details
theta
denotes the parameter vector (alphap, alpham, deltap,
deltam, lambdap, lambdam, mu)
. Either provide the parameters individually OR
provide theta
. Characteristic function shown here is from Rachev et al.
(2011).
\varphi_{GTS}(t;\theta):=
E_{\theta}\left[\mathrm{e}^{\mathrm{i}tX}\right]=
\exp\left(\mathrm{i}t\mu-\mathrm{i}t\Gamma(1-\alpha_+)
\left(\delta_+\lambda_+^{\alpha_+-1}\right)\right.\\
\left. +\mathrm{i}t\Gamma(1-\alpha_-)
\left(\delta_-\lambda_-^{\alpha_--1}\right)\right.\\
\left.+\delta_+\Gamma(-\alpha_+)
\left(\left(\lambda_+-\mathrm{i}t\right)^{\alpha_+}
-\lambda_+^{\alpha_+}\right) \right.\\
\left.+\delta_-\Gamma(-\alpha_-)
\left(\left(\lambda_-+\mathrm{i}t\right)^{\alpha_-}
-\lambda_-^{\alpha_-}\right)\right)
Value
The CF of the the generalized classical tempered stable distribution.
References
Rachev, S. T.; Kim, Y. S.; Bianchi, M. L. & Fabozzi, F. J. (2011), 'Financial models with Lévy processes and volatility clustering' doi:10.1002/9781118268070
Examples
x <- seq(-5,5,0.25)
y <- charGTS(x,0.3,0.2,1,1,1,1,0)