charCTS {TempStable} | R Documentation |
Characteristic function of the classical tempered stable (CTS) distribution
Description
Theoretical characteristic function (CF) of the classical tempered stable distribution. See Kuechler & Tappe (2013) for details.
Usage
charCTS(
t,
alpha = NULL,
deltap = NULL,
deltam = NULL,
lambdap = NULL,
lambdam = NULL,
mu = NULL,
theta = NULL,
functionOrigin = "massing"
)
Arguments
t |
A vector of real numbers where the CF is evaluated. |
alpha |
Stability parameter. A real number between 0 and 2. |
deltap |
Scale parameter for the right tail. A real number > 0. |
deltam |
Scale parameter for the left tail. A real number > 0. |
lambdap |
Tempering parameter for the right tail. A real number > 0. |
lambdam |
Tempering parameter for the left tail. A real number > 0. |
mu |
A location parameter, any real number. |
theta |
Parameters stacked as a vector. |
functionOrigin |
A string. Either "massing", or "kim10". |
Details
theta
denotes the parameter vector (alpha, deltap, deltam,
lambdap, lambdam, mu)
. Either provide the parameters individually OR
provide theta
. Characteristic function shown here is from Massing
(2023).
\varphi_{CTS}(t;\theta):=
E_{\theta}\left[
\mathrm{e}^{\mathrm{i}tX}\right]=
\exp\left(\mathrm{i}t\mu+\delta_+\Gamma(-\alpha)
\left((\lambda_+-\mathrm{i}t)^{\alpha}-\lambda_+^{\alpha}+
\mathrm{i}t\alpha\lambda_+^{\alpha-1}\right)\right.\\
\left. +\delta_-\Gamma(-\alpha)
\left((\lambda_-+\mathrm{i}t)^{\alpha}-\lambda_-^{\alpha}-\mathrm{i}t\alpha
\lambda_-^{\alpha-1}\right)
\right)
Origin of functions
Since the parameterisation can be different for this
characteristic function in different approaches, the respective approach can
be selected with functionOrigin
. For the estimation function
TemperedEstim
and therefore also the Monte Carlo function
TemperedEstim_Simulation
and the calculation of the density function
dMTS
only the approach of Massing (2023) can be selected. If you want
to use the approach of Kim et al. (2010) for these functions, you have to
clone the package from GitHub and adapt the functions accordingly.
- massing
From Massing, T. (2023), 'Parametric Estimation of Tempered Stable Laws'.
- kim10
From Kim et al. (2010) 'Tempered stable and tempered infinitely divisible GARCH models'.
Value
The CF of the classical tempered stable distribution.
References
Kim, Y. S.; Rachev, S. T.; Bianchi, M. L. & Fabozzi, F. J.(2010), 'Tempered stable and tempered infinitely divisible GARCH models', doi:10.1016/j.jbankfin.2010.01.015
Kuechler, U. & Tappe, S. (2013), 'Tempered stable distributions and processes' doi:10.1016/j.spa.2013.06.012
Massing, T. (2023), 'Parametric Estimation of Tempered Stable Laws'
Examples
x <- seq(-10,10,0.25)
y <- charCTS(x,1.5,1,1,1,1,0)