GREG.SI {TeachingSampling} | R Documentation |
The Generalized Regression Estimator under SI sampling design
Description
Computes the generalized regression estimator of the population total for several variables of interest under simple random sampling without replacement
Usage
GREG.SI(N, n, y, x, tx, b, b0=FALSE)
Arguments
N |
The population size |
n |
The sample size |
y |
Vector, matrix or data frame containing the recollected information of the variables of interest for every unit in the selected sample |
x |
Vector, matrix or data frame containing the recollected auxiliary information for every unit in the selected sample |
tx |
Vector containing the populations totals of the auxiliary information |
b |
Vector of estimated regression coefficients |
b0 |
By default FALSE. The intercept of the regression model |
Value
The function returns a vector of total population estimates for each variable of interest, its estimated standard error and its estimated coefficient of variation.
Author(s)
Hugo Andres Gutierrez Rojas hagutierrezro@gmail.com
References
Sarndal, C-E. and Swensson, B. and Wretman, J. (1992), Model Assisted Survey Sampling. Springer.
Gutierrez, H. A. (2009), Estrategias de muestreo: Diseno de encuestas y estimacion de parametros.
Editorial Universidad Santo Tomas.
See Also
Examples
######################################################################
## Example 1: Linear models involving continuous auxiliary information
######################################################################
# Draws a simple random sample without replacement
data(Lucy)
attach(Lucy)
N <- dim(Lucy)[1]
n <- 400
sam <- S.SI(N,n)
# The information about the units in the sample is stored in an object called data
data <- Lucy[sam,]
attach(data)
names(data)
########### common mean model
estima<-data.frame(Income, Employees, Taxes)
x <- rep(1,n)
model <- E.Beta(N, n, estima, x, ck=1,b0=FALSE)
b <- t(as.matrix(model[1,,]))
tx <- c(N)
GREG.SI(N,n,estima,x,tx, b, b0=FALSE)
########### common ratio model
estima<-data.frame(Income)
x <- data.frame(Employees)
model <- E.Beta(N, n, estima, x, ck=x,b0=FALSE)
b <- t(as.matrix(model[1,,]))
tx <- sum(Lucy$Employees)
GREG.SI(N,n,estima,x,tx, b, b0=FALSE)
########### Simple regression model without intercept
estima<-data.frame(Income, Employees)
x <- data.frame(Taxes)
model <- E.Beta(N, n, estima, x, ck=1,b0=FALSE)
b <- t(as.matrix(model[1,,]))
tx <- sum(Lucy$Taxes)
GREG.SI(N,n,estima,x,tx, b, b0=FALSE)
########### Multiple regression model without intercept
estima<-data.frame(Income)
x <- data.frame(Employees, Taxes)
model <- E.Beta(N, n, estima, x, ck=1, b0=FALSE)
b <- as.matrix(model[1,,])
tx <- c(sum(Lucy$Employees), sum(Lucy$Taxes))
GREG.SI(N,n,estima,x,tx, b, b0=FALSE)
########### Simple regression model with intercept
estima<-data.frame(Income, Employees)
x <- data.frame(Taxes)
model <- E.Beta(N, n, estima, x, ck=1,b0=TRUE)
b <- as.matrix(model[1,,])
tx <- c(N, sum(Lucy$Taxes))
GREG.SI(N,n,estima,x,tx, b, b0=TRUE)
########### Multiple regression model with intercept
estima<-data.frame(Income)
x <- data.frame(Employees, Taxes)
model <- E.Beta(N, n, estima, x, ck=1,b0=TRUE)
b <- as.matrix(model[1,,])
tx <- c(N, sum(Lucy$Employees), sum(Lucy$Taxes))
GREG.SI(N,n,estima,x,tx, b, b0=TRUE)
####################################################################
## Example 2: Linear models with discrete auxiliary information
####################################################################
# Draws a simple random sample without replacement
data(Lucy)
N <- dim(Lucy)[1]
n <- 400
sam <- S.SI(N,n)
# The information about the units in the sample is stored in an object called data
data <- Lucy[sam,]
attach(data)
names(data)
# The auxiliary information is discrete type
Doma<-Domains(Level)
########### Poststratified common mean model
estima<-data.frame(Income, Employees, Taxes)
model <- E.Beta(N, n, estima, Doma, ck=1,b0=FALSE)
b <- t(as.matrix(model[1,,]))
tx <- colSums(Domains(Lucy$Level))
GREG.SI(N,n,estima,Doma,tx, b, b0=FALSE)
########### Poststratified common ratio model
estima<-data.frame(Income, Employees)
x <- Doma*Taxes
model <- E.Beta(N, n, estima, x ,ck=1,b0=FALSE)
b <- as.matrix(model[1,,])
tx <- colSums(Domains(Lucy$Level)*Lucy$Taxes)
GREG.SI(N,n,estima,x,tx, b, b0=FALSE)
######################################################################
## Example 3: Domains estimation trough the postestratified estimator
######################################################################
# Draws a simple random sample without replacement
data(Lucy)
N <- dim(Lucy)[1]
n <- 400
sam <- S.SI(N,n)
# The information about the units in the sample is stored in an object called data
data <- Lucy[sam,]
attach(data)
names(data)
# The auxiliary information is discrete type
Doma<-Domains(Level)
########### Poststratified common mean model for the
# Income total in each poststratum ###################
estima<-Doma*Income
model <- E.Beta(N, n, estima, Doma, ck=1, b0=FALSE)
b <- t(as.matrix(model[1,,]))
tx <- colSums(Domains(Lucy$Level))
GREG.SI(N,n,estima,Doma,tx, b, b0=FALSE)
########### Poststratified common mean model for the
# Employees total in each poststratum ###################
estima<-Doma*Employees
model <- E.Beta(N, n, estima, Doma, ck=1,b0=FALSE)
b <- t(as.matrix(model[1,,]))
tx <- colSums(Domains(Lucy$Level))
GREG.SI(N,n,estima,Doma,tx, b, b0=FALSE)
########### Poststratified common mean model for the
# Taxes total in each poststratum ###################
estima<-Doma*Taxes
model <- E.Beta(N, n, estima, Doma, ck=1, b0=FALSE)
b <- t(as.matrix(model[1,,]))
tx <- colSums(Domains(Lucy$Level))
GREG.SI(N,n,estima,Doma,tx, b, b0=FALSE)