E.1SI {TeachingSampling} | R Documentation |
Estimation of the Population Total under Single Stage Simple Random Sampling Without Replacement
Description
This function computes the Horvitz-Thompson estimator of the population total according to a single stage sampling design.
Usage
E.1SI(NI, nI, y, PSU)
Arguments
NI |
Population size of Primary Sampling Units. |
nI |
Sample size of Primary Sampling Units. |
y |
Vector, matrix or data frame containig the recollected information of the variables of interest for every unit in the selected sample. |
PSU |
Vector identifying the membership to the strata of each unit in the population. |
Details
The function returns a data matrix whose columns correspond to the estimated parameters of the variables of interest.
Value
This function returns the estimation of the population total of every single variable of interest, its estimated standard error and its estimated coefficient of variation.
Author(s)
Hugo Andres Gutierrez Rojas <hugogutierrez at gmail.com>
References
Sarndal, C-E. and Swensson, B. and Wretman, J. (1992), Model Assisted Survey Sampling. Springer.
Gutierrez, H. A. (2009), Estrategias de muestreo: Diseno de encuestas y estimacion de parametros. Editorial Universidad Santo Tomas
See Also
Examples
data('BigCity')
Households <- BigCity %>% group_by(HHID) %>%
summarise(Stratum = unique(Stratum),
PSU = unique(PSU),
Persons = n(),
Income = sum(Income),
Expenditure = sum(Expenditure))
attach(Households)
UI <- levels(as.factor(Households$PSU))
NI <- length(UI)
nI <- 100
samI <- S.SI(NI, nI)
sampleI <- UI[samI]
CityI <- Households[which(Households$PSU %in% sampleI), ]
attach(CityI)
area <- as.factor(CityI$PSU)
estima <- data.frame(CityI$Persons, CityI$Income, CityI$Expenditure)
E.1SI(NI, nI, estima, area)