| volatility {TTR} | R Documentation | 
Volatility
Description
Selected volatility estimators/indicators; various authors.
Usage
volatility(OHLC, n = 10, calc = "close", N = 260, mean0 = FALSE, ...)
Arguments
| OHLC | Object that is coercible to xts or matrix and contains
Open-High-Low-Close prices (or only Close prices, if  | 
| n | Number of periods for the volatility estimate. | 
| calc | The calculation (type) of estimator to use. | 
| N | Number of periods per year. | 
| mean0 | Use a mean of 0 rather than the sample mean. | 
| ... | Arguments to be passed to/from other methods. | 
Details
- Close-to-Close Volatility ( - calc="close")
 - \sigma_{cl} = \sqrt{\frac{N}{n-2} \sum_{i=1}^{n-1}(r_i-\bar{r})^2}- where\;\; r_i = \log \left(\frac{C_i}{C_{i-1}}\right)- and\;\; \bar{r} = \frac{r_1+r_2+\ldots +r_{n-1}}{n-1}
- OHLC Volatility: Garman and Klass ( - calc="garman.klass")
 The Garman and Klass estimator for estimating historical volatility assumes Brownian motion with zero drift and no opening jumps (i.e. the opening = close of the previous period). This estimator is 7.4 times more efficient than the close-to-close estimator.
 - \sigma = \sqrt{ \frac{N}{n} \sum \left[ \textstyle\frac{1}{2}\displaystyle \left( \log \frac{H_i}{L_i} \right)^2 - (2\log 2-1) \left( \log \frac{C_i}{O_i} \right)^2 \right] }
- High-Low Volatility: Parkinson ( - calc="parkinson")
 The Parkinson formula for estimating the historical volatility of an underlying based on high and low prices.
 - \sigma = \sqrt{ \frac{N}{4 n \times \log 2} \sum_{i=1}^{n} \left(\log \frac{H_i}{L_i}\right)^2}
- OHLC Volatility: Rogers and Satchell ( - calc="rogers.satchell")
 The Roger and Satchell historical volatility estimator allows for non-zero drift, but assumed no opening jump.
 - \sigma = \sqrt{ \textstyle\frac{N}{n} \sum \left[ \log \textstyle\frac{H_i}{C_i} \times \log \textstyle\frac{H_i}{O_i} + \log \textstyle\frac{L_i}{C_i} \times \log \textstyle\frac{L_i}{O_i} \right] }
- OHLC Volatility: Garman and Klass - Yang and Zhang ( - calc="gk.yz")
 This estimator is a modified version of the Garman and Klass estimator that allows for opening gaps.
 - \sigma = \sqrt{ \textstyle\frac{N}{n} \sum \left[ \left( \log \textstyle\frac{O_i}{C_{i-1}} \right)^2 + \textstyle\frac{1}{2}\displaystyle \left( \log \textstyle\frac{H_i}{L_i} \right)^2 - (2 \times \log 2-1) \left( \log \textstyle\frac{C_i}{O_i} \right)^2 \right] }
- OHLC Volatility: Yang and Zhang ( - calc="yang.zhang")
 The Yang and Zhang historical volatility estimator has minimum estimation error, and is independent of drift and opening gaps. It can be interpreted as a weighted average of the Rogers and Satchell estimator, the close-open volatility, and the open-close volatility.- Users may override the default values of - \alpha(1.34 by default) or- kused in the calculation by specifying- alphaor- kin- ..., respectively. Specifying- kwill cause- alphato be ignored, if both are provided.
 - \sigma^2 = \sigma_o^2 + k\sigma_c^2 + (1-k)\sigma_{rs}^2- \sigma_o^2 =\textstyle \frac{N}{n-1} \sum \left( \log \frac{O_i}{C_{i-1}}-\mu_o \right)^2- \mu_o=\textstyle \frac{1}{n} \sum \log \frac{O_i}{C_{i-1}}- \sigma_c^2 =\textstyle \frac{N}{n-1} \sum \left( \log \frac{C_i}{O_i}-\mu_c \right)^2- \mu_c=\textstyle \frac{1}{n} \sum \log \frac{C_i}{O_i}- \sigma_{rs}^2 = \textstyle\frac{N}{n} \sum \left( \log \textstyle\frac{H_i}{C_i} \times \log \textstyle\frac{H_i}{O_i} + \log \textstyle\frac{L_i}{C_i} \times \log \textstyle\frac{L_i}{O_i} \right)- k=\frac{\alpha-1}{alpha+\frac{n+1}{n-1}}
Value
A object of the same class as OHLC or a vector (if
try.xts fails) containing the chosen volatility estimator values.
Author(s)
Joshua Ulrich
References
The following sites were used to code/document these
indicators. All were created by Thijs van den Berg under the GNU Free
Documentation License and were retrieved on 2008-04-20. The original
links are dead, but can be accessed via internet archives.
 Close-to-Close Volatility (calc="close"):
https://web.archive.org/web/20100421083157/http://www.sitmo.com/eq/172
 OHLC Volatility: Garman Klass (calc="garman.klass"):
https://web.archive.org/web/20100326172550/http://www.sitmo.com/eq/402
 High-Low Volatility: Parkinson (calc="parkinson"):
https://web.archive.org/web/20100328195855/http://www.sitmo.com/eq/173
 OHLC Volatility: Rogers Satchell (calc="rogers.satchell"):
https://web.archive.org/web/20091002233833/http://www.sitmo.com/eq/414
 OHLC Volatility: Garman Klass - Yang Zhang (calc="gk.yz"):
https://web.archive.org/web/20100326215050/http://www.sitmo.com/eq/409
 OHLC Volatility: Yang Zhang (calc="yang.zhang"):
https://web.archive.org/web/20100326215050/http://www.sitmo.com/eq/409
See Also
See TR and chaikinVolatility for other
volatility measures.
Examples
 data(ttrc)
 ohlc <- ttrc[,c("Open","High","Low","Close")]
 vClose <- volatility(ohlc, calc="close")
 vClose0 <- volatility(ohlc, calc="close", mean0=TRUE)
 vGK <- volatility(ohlc, calc="garman")
 vParkinson <- volatility(ohlc, calc="parkinson")
 vRS <- volatility(ohlc, calc="rogers")