sptd {TSdisaggregation}R Documentation

Function to do sparse temporal disaggregation from Mosley et al. (2021).

Description

Used in disaggregation.R to find estimates given the optimal rho parameter.

Usage

sptd(Y, X, rho, aggMat, aggRatio, adaptive = FALSE)

Arguments

Y

The low-frequency response series (n_l x 1 matrix).

X

The high-frequency indicator series (n x p matrix).

rho

The AR(1) residual parameter (strictly between -1 and 1).

aggMat

Aggregation matrix according to 'first', 'sum', 'average', 'last' (default is 'sum').

aggRatio

Aggregation ratio e.g. 4 for annual-to-quarterly, 3 for quarterly-to-monthly (default is 4).

adaptive

TRUE to use adaptive lasso penalty. FALSE for lasso penalty. Default is FALSE.

Value

y Estimated high-frequency response series (n x 1 matrix).

betaHat Estimated coefficient vector (p x 1 matrix).

u_l Estimated aggregate residual series (n_l x 1 matrix).

References

Mosley L, Eckley I, Gibberd A (2021). “Sparse Temporal Disaggregation.” arXiv preprint arXiv:2108.05783.


[Package TSdisaggregation version 2.0.0 Index]