ARSVM {TSSVM} | R Documentation |
Auto-Regressive Support Vector Machine
Description
The ARSVM function fit Auto-Regressive Support Vector Machine for univariate time series data.
Usage
ARSVM(data,h)
Arguments
data |
Input univariate time series (ts) data. |
h |
The forecast horizon. |
Details
This package allows you to fit the Auto-Regressive Support Vector Machine for univariate time series.
Value
Optimum lag |
Optimum lag of the considered data |
Model Summary |
Summary of the fitted SVM |
Weights |
weights of the fitted SVM |
Constant |
Constant of the fitted SVM |
MAPE |
Mean Absolute Percentage Error (MAPE) of the SVM |
RMSE |
Root Mean Square Error (RMSE) of fitted SVM |
fitted |
Fitted values of SVM |
forecasted.values |
h step ahead forecasted values employing SVM |
Author(s)
Mrinmoy Ray,Samir Barman, Kanchan Sinha, K. N. Singh
References
Kim, K.(2003). Financial time series forecasting using support vector machines, 55(1-2), 307-319.
See Also
SVM
Examples
data=lynx
ARSVM(data,5)
[Package TSSVM version 0.1.0 Index]