tvspc {TSSS} | R Documentation |
Evolutionary Power Spectra by Time Varying AR Model
Description
Estimate evolutionary power spectra by time varying AR model.
Usage
tvspc(arcoef, sigma2, var = NULL, span = 20, nf = 200)
Arguments
arcoef |
time varying AR coefficients. |
sigma2 |
variance of the observational noise. |
var |
time varying variance. |
span |
local stationary span. |
nf |
number of frequencies in evaluating power spectrum. |
Value
return an object of class "tvspc"
giving power spectra, which has a
plot
method (plot.tvspc
).
References
Kitagawa, G. (2020) Introduction to Time Series Modeling with Applications in R. Chapman & Hall/CRC.
Kitagawa, G. and Gersch, W. (1996) Smoothness Priors Analysis of Time Series. Lecture Notes in Statistics, No.116, Springer-Verlag.
Kitagawa, G. and Gersch, W. (1985) A smoothness priors time varying AR coefficient modeling of nonstationary time series. IEEE trans. on Automatic Control, AC-30, 48-56.
Examples
# seismic data
data(MYE1F)
z <- tvar(MYE1F, trend.order = 2, ar.order = 8, span = 20,
outlier = c(630, 1026), tau2.ini = 6.6e-06, delta = 1.0e-06)
spec <- tvspc(z$arcoef, z$sigma2)
plot(spec)
[Package TSSS version 1.3.4-5 Index]