tvar {TSSS} | R Documentation |
Time Varying Coefficients AR Model
Description
Estimate time varying coefficients AR model.
Usage
tvar(y, trend.order = 2, ar.order = 2, span, outlier = NULL, tau2.ini = NULL,
delta, plot = TRUE)
Arguments
y |
a univariate time series. |
trend.order |
trend order (1 or 2). |
ar.order |
AR order. |
span |
local stationary span. |
outlier |
positions of outliers. |
tau2.ini |
initial estimate of variance of the system noise |
delta |
search width. |
plot |
logical. If |
Details
The time-varying coefficients AR model is given by
y_t = a_{1,t}y_{t-1} + \ldots + a_{p,t}y_{t-p} + u_t
where a_{i,t}
is i
-lag AR coefficient at time t
and u_t
is a zero mean white noise.
The time-varying spectrum can be plotted using AR coefficient arcoef
and variance of the observational noise sigma2
by tvspc
.
Value
arcoef |
time varying AR coefficients. |
sigma2 |
variance of the observational noise |
tau2 |
variance of the system noise |
llkhood |
log-likelihood of the model. |
aic |
AIC. |
parcor |
PARCOR. |
References
Kitagawa, G. (2020) Introduction to Time Series Modeling with Applications in R. Chapman & Hall/CRC.
Kitagawa, G. and Gersch, W. (1996) Smoothness Priors Analysis of Time Series. Lecture Notes in Statistics, No.116, Springer-Verlag.
Kitagawa, G. and Gersch, W. (1985) A smoothness priors time varying AR coefficient modeling of nonstationary time series. IEEE trans. on Automatic Control, AC-30, 48-56.
See Also
Examples
# seismic data
data(MYE1F)
z <- tvar(MYE1F, trend.order = 2, ar.order = 8, span = 20,
outlier = c(630, 1026), tau2.ini = 6.6e-06, delta = 1.0e-06)
z
spec <- tvspc(z$arcoef, z$sigma2)
plot(spec)