tspred {TSPred} | R Documentation |
Time series prediction process
Description
Constructor for the tspred
class representing a time series prediction
process. This process may involve subsetting the time series data into training and testing sets,
preprocessing/postprocessing the data, modeling, prediction and finally an evaluation
of modeling fitness and prediction quality. All these process steps should be based on
particular time series transformation methods, a modeling and prediction method, and quality metrics
which are defined in a tspred
class object.
Usage
tspred(
subsetting = NULL,
processing = NULL,
modeling = NULL,
evaluating = NULL,
data = NULL,
n.ahead = NULL,
one_step = FALSE,
...,
subclass = NULL
)
Arguments
subsetting |
A |
processing |
List of named |
modeling |
A |
evaluating |
List of named |
data |
A list of time series to be pre(post)processed, modelled and/or predicted. |
n.ahead |
Integer defining the number of observations to be predicted. |
one_step |
Should the function produce one-step ahead predictions?
If |
... |
Other parameters to be encapsulated in the class object. |
subclass |
Name of new specialized subclass object created in case it is provided. |
Value
An object of class tspred
.
Author(s)
Rebecca Pontes Salles
See Also
Other constructors:
ARIMA()
,
LT()
,
MSE_eval()
,
evaluating()
,
modeling()
,
processing()
Examples
#Obtaining objects of the processing class
proc1 <- subsetting(test_len=20)
proc2 <- BoxCoxT(lambda=NULL)
proc3 <- WT(level=1, filter="bl14")
#Obtaining objects of the modeling class
modl1 <- ARIMA()
#Obtaining objects of the evaluating class
eval1 <- MSE_eval()
eval2 <- MAPE_eval()
#Defining a time series prediction process
tspred_1 <- tspred(subsetting=proc1,
processing=list(BCT=proc2,
WT=proc3),
modeling=modl1,
evaluating=list(MSE=eval1,
MAPE=eval2)
)
summary(tspred_1)
#Obtaining objects of the processing class
proc4 <- SW(window_len = 6)
proc5 <- MinMax()
#Obtaining objects of the modeling class
modl2 <- NNET(size=5,sw=proc4,proc=list(MM=proc5))
#Defining a time series prediction process
tspred_2 <- tspred(subsetting=proc1,
processing=list(BCT=proc2,
WT=proc3),
modeling=modl2,
evaluating=list(MSE=eval1,
MAPE=eval2)
)
summary(tspred_2)