MSE_eval {TSPred} | R Documentation |
Prediction/modeling quality metrics
Description
Constructors for the evaluating
class representing a time series prediction
or modeling fitness quality evaluation based on particular metrics.
Usage
MSE_eval()
NMSE_eval(eval_par = list(train.actual = NULL))
RMSE_eval()
MAPE_eval()
sMAPE_eval()
MAXError_eval()
AIC_eval()
BIC_eval()
AICc_eval()
LogLik_eval()
Arguments
eval_par |
List of named parameters required by |
Value
An object of class evaluating
.
Error metrics
MSE_eval: Mean Squared Error.
NMSE_eval: Normalised Mean Squared Error.
RMSE_eval: Root Mean Squared Error.
MAPE_eval: Mean Absolute Percentage Error.
sMAPE_eval: Symmetric Mean Absolute Percentage Error.
MAXError_eval: Maximal Error.
Fitness criteria
AIC_eval: Akaike's Information Criterion.
BIC_eval: Schwarz's Bayesian Information Criterion.
AICc_eval: Second-order Akaike's Information Criterion.
LogLik_eval: Log-Likelihood.
Author(s)
Rebecca Pontes Salles
See Also
Other constructors:
ARIMA()
,
LT()
,
evaluating()
,
modeling()
,
processing()
,
tspred()