LSTMModel {TSLSTMplus} | R Documentation |
LSTMModel class
Description
LSTMModel class for further use in predict function
Usage
LSTMModel(
lstm_model,
scale_output,
scaler_output,
scale_input,
scaler_input,
tsLag,
xregLag,
model_structure,
batch_size,
lags_as_sequences,
stateful
)
Arguments
lstm_model |
LSTM 'keras' model |
scale_output |
indicate which type of scaler is used in the output |
scaler_output |
Scaler of output variable (and lags) |
scale_input |
indicate which type of scaler is used in the input(s) |
scaler_input |
Scaler of input variable(s) (and lags) |
tsLag |
Lag of time series data |
xregLag |
Lag of exogenous variables |
model_structure |
Summary of the LSTM model previous to training |
batch_size |
Batch size used during training of the model |
lags_as_sequences |
Flag to indicate the model has been trained statefully |
stateful |
Flag to indicate if LSTM layers shall retain its state between batches. |
Value
LSTMModel object
References
Paul, R.K. and Garai, S. (2021). Performance comparison of wavelets-based machine learning technique for forecasting agricultural commodity prices, Soft Computing, 25(20), 12857-12873
Examples
if (keras::is_keras_available()){
y<-rnorm(100,mean=100,sd=50)
x1<-rnorm(100,mean=50,sd=50)
x2<-rnorm(100, mean=50, sd=25)
x<-cbind(x1,x2)
TSLSTM<-ts.lstm(ts=y,
xreg = x,
tsLag=2,
xregLag = 0,
LSTMUnits=5,
ScaleInput = 'scale',
ScaleOutput = 'scale',
Epochs=2)
}
[Package TSLSTMplus version 1.0.4 Index]