featureSelect {TSGS} | R Documentation |
Trait specific gene selection using SVM and GA
Description
This function gives the optimal set of informative genes based on RNA-Seq count data
Usage
featureSelect(X, y, p = 5, n.iter = 1, alpha = 0.05, p.adj.method = "bonferroni")
Arguments
X |
X is a G x N data frame of gene expression values (raw count data) where rows represent genes and columns represent samples. Each cell entry represents the read counts of of a gene in a sample (row names of X as gene names or gene ids) |
y |
y is a N x 1 numeric vector with entries 0 or 1 representing sample labels, where, 0/1 represents the sample label of samples for two conditions, e.g., 0 for Control and 1 for Case |
p |
Population size, by default 5 |
n.iter |
The number of iterations, by default 1 |
alpha |
The level of significance, by default 0.05 |
p.adj.method |
Method of adjusting p-values, by default "bonferroni". The other methods available are "BH", "holm", "hochberg", "hommel", "BY". |
Value
InformativeGenes |
List of informative genes selected |
LogCPM |
Log cpm data of informative genes |
DEA_Result |
Differential Expression Analysis Result of informative genes |
Author(s)
c(person("Md. Samir", "Farooqi", email = "ms.Farooqi@icar.gov.in", role = "aut"), person("K.K.", "Chaturvedi", email = "kk.Chaturvedi@icar.gov.in", role = "aut"), person("D.C.", "Mishra", email = "Dwijesh.Mishra@icar.gov.in", role = "aut"), person("Sudhir", "Srivastava", email = "Sudhir.Srivastava@icar.gov.in", role = c("cre","aut")))
Examples
filename <- system.file("extdata", "exampleData.csv", package = "TSGS")
cdata <- read.csv(filename, header = TRUE, row.names = 1, stringsAsFactors = FALSE)
X <- as.data.frame(cdata[-1,])
y <- as.numeric(cdata[1,])
set.seed(100)
result <- featureSelect(X, y, 5, 1, 0.05, "bonferroni")
gene_list <- result$InformativeGenes
logcpm_data <- result$LogCPM
dea_result <- result$DEA_Result