testModel {TSEAL}R Documentation

Computes a classification from a pretrained discriminant

Description

This function uses a pretrained linear discriminant to classify a set of test data. As output it returns a confusion matrix and optionally the raw classification result.

Usage

testModel(model, test, labels, returnClassification = FALSE, ...)

Arguments

model

Trained linear discriminant. see trainModel

test

MultiWaveAnalysis class object to be used as test set.

labels

Vector that determines the class to which each of the observations provided in the test set belongs.

returnClassification

Allows to select if the raw result classification is returned.

...

Additional arguments

Value

See Also

testModel

Examples


load(system.file("extdata/ECGExample.rda",package = "TSEAL"))
# The dataset has the first 5 elements of class 1
# and the last 5 of class 2.
labels <- c(rep(1, 5), rep(2, 5))
MWA <- generateStepDiscrim(ECGExample, labels, "haar", maxvars = 5, features = c("var"))
aux <- extractSubset(MWA, c(1, 2, 9, 10))
MWATest <- aux[[1]]
MWATrain <- aux[[2]]
ldaDiscriminant <- trainModel(MWATrain, labels[3:8], "linear")
CM <- testModel(ldaDiscriminant, MWATest, labels[c(1, 2, 9, 10)])



[Package TSEAL version 0.1.3 Index]