AVERSE {TSE}R Documentation

Calculate average relative squared error (aRSE)

Description

Calculates average relative squared error (aRSE) for one or more surveys

Usage

AVERSE(Actuals1 = data.frame(), Observed1 = data.frame(), ...)

Arguments

Actuals1

= data from a "gold standard" survey; objects are variable columns from "gold standard" survey that corruspond to variable columns Observed1

Observed1

= data from survey 1; objects are variable columns from survey 1 that corruspond to variable columns from Actuals1

...

= "gold standard" data/survey # data for additional surveys

Details

aRSE for survey # => mean value of the RSEs for specified variables in survey # => mean value of RSEs for objects in Observed#=data.frame()

Value

Average relative squared error (aRSE)

Note

Make sure to properly order inputs, per the example: Actuals1=data.frame() objects and corrusponding Observed1=data.frame() objects must be given in the same order as each other; and ... must be given in numbered pairs of Actuals#, Observed#, and those pairs given in sequence of their #s.

Examples

AVERSE(Actuals1=data.frame(TESTNUMB$AQ1, TESTNUMB$AQ2),
Observed1=data.frame(TESTNUMB$O1Q1, TESTNUMB$O1Q2),
Actuals2=data.frame(TESTNUMB$AQ1, TESTNUMB$AQ2),
Observed2=data.frame(TESTNUMB$O2Q1, TESTNUMB$O2Q2),
Actuals3=data.frame(TESTNUMB$AQ1, TESTNUMB$AQ2),
Observed3=data.frame(TESTNUMB$O3Q1, TESTNUMB$O3Q2))

[Package TSE version 0.1.0 Index]