plot_compare {TSCS} | R Documentation |
Graphic Comparison Between Estimates and True Values
Description
Provided that you have the true values of missing observations, you can compare them
with the results of interpolation. plot_compare
visualizes the comparison
between estimates and true values. (NB: this plotting function can also be used
in other similar situations involving comparison between estimates and true values.)
Usage
plot_compare(est, true, cex = 1, width = 1, P = 6/7, AI = TRUE)
Arguments
est |
a numeric vector; estimations. |
true |
a numeric vector; true values. |
cex |
numeric; size of point to be plotted. (default: 1) |
width |
numeric; width of fitted straight line. (default: 1) |
P |
numeric, between 0 and 1; position for superimposing values of appraisal indexes. (default: 6/7) |
AI |
logical; |
Details
Attentions:
The values in
est
andtrue
vectors should be arranged in the same order, in correspondence with the sequence of observations.If the maximum value of either
est
ortrue
is greater than 1000, or the minimum is smaller than -1000, please make appropriate transformation that limits your data to bound [-1000,1000].
In the plot:
The big red point is the origin.
The red line stands for straight line
y = x
.The blue line stands for fitted straight line.
See Also
Examples
## Not run:
## TSCS spatial interpolation procedure:
basis <- tscsRegression(data = data, h = 1, v = 1, alpha = 0.01) # regression
basis$percentage # see the percentage of cointegrated relationships
est <- tscsEstimate(matrix = basis$coef_matrix, newdata = newdata, h = 1, v = 1) # estimation
str(est)
## comparison of estimates and true values:
plot_compare(est = est$estimate[,3], true = true) # graphic comparison
index <- appraisal_index(est = est$estimate[,3], true = true); # RMSE & std
index
## data visualization:
plot_dif(data = data[,1:2], h = 1, v = 1) # differentiate boundary and interior spatial locations
plot_NA(newdata = newdata) # show spatial locations with missing value, for a cross-section data
plot_map(newdata = newdata) # plot the 2D spatial map, for a cross-section data
## End(Not run)