garch.sim {TSA} | R Documentation |
Simulate a GARCH process
Description
Simulate a GARCH process.
Usage
garch.sim(alpha, beta, n = 100, rnd = rnorm, ntrans = 100,...)
Arguments
alpha |
The vector of ARCH coefficients including the intercept term as the first element |
beta |
The vector of GARCH coefficients |
n |
sample size |
rnd |
random number generator for the noise; default is normal |
ntrans |
burn-in size, i.e. number of initial simulated data to be discarded |
... |
parameters to be passed to the random number generator |
Details
Simulate data from the GARCH(p,q) model:
x_t=\sigma_{t|t-1} e_t
where \{e_t\}
is iid, e_t
independent of past x_{t-s}, s=1,2,\ldots
, and
\sigma_{t|t-1}=\sum_{j=1}^p \beta_j \sigma_{t-j|t-j-1}+
\alpha_0+\sum_{j=1}^q \alpha_j x_{t-i}^2
Value
simulated GARCH time series of size n.
Author(s)
Kung-Sik Chan
Examples
set.seed(1235678)
garch01.sim=garch.sim(alpha=c(.01,.9),n=500)
plot(garch01.sim,type='l', main='',ylab=expression(r[t]),xlab='t')
[Package TSA version 1.3.1 Index]