detectIO {TSA} | R Documentation |
Innovative Outlier Detection
Description
This function serves to detect whether there are any innovative
outliers (IO). It implements the
test statistic lambda_{2,t}
proposed by Chang, Chen and Tiao (1988).
Usage
detectIO(object, alpha = 0.05, robust = TRUE)
Arguments
object |
a fitted ARIMA model |
alpha |
family significance level (5% is the default) Bonferroni rule is used to control the family error rate. |
robust |
if true, the noise standard deviation is estimated by mean absolute residuals times sqrt(pi/2). Otherwise, it is the estimated by sqrt(sigma2) from the arima fit. |
Value
A list containing the following components:
ind |
the time indices of potential AO |
lambda1 |
the corresponding test statistics |
Author(s)
Kung-Sik Chan
References
Chang, I.H., Tiao, G.C. and C. Chen (1988). Estimation of Time Series Parameters in the Presence of Outliers. Technometrics, 30, 193-204.
See Also
Examples
set.seed(12345)
y=arima.sim(model=list(ar=.8,ma=.5),n.start=158,n=100)
y[10]
y[10]=10
y=ts(y,freq=1,start=1)
plot(y,type='o')
acf(y)
pacf(y)
eacf(y)
m1=arima(y,order=c(1,0,0))
m1
detectAO(m1)
detectAO(m1, robust=FALSE)
detectIO(m1)
[Package TSA version 1.3.1 Index]