screen_trex {TRexSelector} | R Documentation |
Run the Screen-T-Rex selector (doi:10.1109/SSP53291.2023.10207957)
Description
The Screen-T-Rex selector (doi:10.1109/SSP53291.2023.10207957) performs very fast variable selection in high-dimensional settings while informing the user about the automatically selected false discovery rate (FDR).
Usage
screen_trex(
X,
y,
K = 20,
R = 1000,
method = "trex",
bootstrap = FALSE,
conf_level_grid = seq(0, 1, by = 0.001),
cor_coef = NA,
type = "lar",
corr_max = 0.5,
lambda_2_lars = NULL,
rho_thr_DA = 0.02,
parallel_process = FALSE,
parallel_max_cores = min(K, max(1, parallel::detectCores(logical = FALSE))),
seed = NULL,
eps = .Machine$double.eps,
verbose = TRUE
)
Arguments
X |
Real valued predictor matrix. |
y |
Response vector. |
K |
Number of random experiments. |
R |
Number of bootstrap resamples. |
method |
'trex' for the T-Rex selector (doi:10.48550/arXiv.2110.06048), 'trex+GVS' for the T-Rex+GVS selector (doi:10.23919/EUSIPCO55093.2022.9909883), 'trex+DA+AR1' for the T-Rex+DA+AR1 selector, 'trex+DA+equi' for the T-Rex+DA+equi selector. |
bootstrap |
Logical. If TRUE Screen-T-Rex is carried out with bootstrapping. |
conf_level_grid |
Confidence level grid for the bootstrap confidence intervals. |
cor_coef |
AR(1) autocorrelation coefficient for the T-Rex+DA+AR1 selector or equicorrelation coefficient for the T-Rex+DA+equi selector. |
type |
'lar' for 'LARS' and 'lasso' for Lasso. |
corr_max |
Maximum allowed correlation between any two predictors from different clusters. |
lambda_2_lars |
lambda_2-value for LARS-based Elastic Net. |
rho_thr_DA |
Correlation threshold for the T-Rex+DA+AR1 selector and the T-Rex+DA+equi selector (i.e., method = 'trex+DA+AR1' or 'trex+DA+equi'). |
parallel_process |
Logical. If TRUE random experiments are executed in parallel. |
parallel_max_cores |
Maximum number of cores to be used for parallel processing. |
seed |
Seed for random number generator (ignored if parallel_process = FALSE). |
eps |
Numerical zero. |
verbose |
Logical. If TRUE progress in computations is shown. |
Value
A list containing the estimated support vector, the automatically selected false discovery rate (FDR) and additional information.
Examples
data("Gauss_data")
X <- Gauss_data$X
y <- c(Gauss_data$y)
set.seed(123)
res <- screen_trex(X = X, y = y)
selected_var <- res$selected_var
selected_var