lm_dummy {TRexSelector} | R Documentation |
Perform one random experiment
Description
Run one random experiment of the T-Rex selector (doi:10.48550/arXiv.2110.06048), i.e., generates dummies, appends them to the predictor matrix, and runs the forward selection algorithm until it is terminated after T_stop dummies have been selected.
Usage
lm_dummy(
X,
y,
model_tlars,
T_stop = 1,
num_dummies = ncol(X),
method = "trex",
GVS_type = "IEN",
type = "lar",
corr_max = 0.5,
lambda_2_lars = NULL,
early_stop = TRUE,
verbose = TRUE,
intercept = FALSE,
standardize = TRUE
)
Arguments
X |
Real valued predictor matrix. |
y |
Response vector. |
model_tlars |
Object of the class tlars_cpp. It contains all state variables of the previous T-LARS step (necessary for warm-starts, i.e., restarting the forward selection process exactly where it was previously terminated). |
T_stop |
Number of included dummies after which the random experiments (i.e., forward selection processes) are stopped. |
num_dummies |
Number of dummies that are appended to the predictor matrix. |
method |
'trex' for the T-Rex selector (doi:10.48550/arXiv.2110.06048), 'trex+GVS' for the T-Rex+GVS selector (doi:10.23919/EUSIPCO55093.2022.9909883), 'trex+DA+AR1' for the T-Rex+DA+AR1 selector, 'trex+DA+equi' for the T-Rex+DA+equi selector, 'trex+DA+BT' for the T-Rex+DA+BT selector (doi:10.48550/arXiv.2401.15796), 'trex+DA+NN' for the T-Rex+DA+NN selector (doi:10.48550/arXiv.2401.15139). |
GVS_type |
'IEN' for the Informed Elastic Net (doi:10.1109/CAMSAP58249.2023.10403489), 'EN' for the ordinary Elastic Net (doi:10.1111/j.1467-9868.2005.00503.x). |
type |
'lar' for 'LARS' and 'lasso' for Lasso. |
corr_max |
Maximum allowed correlation between any two predictors from different clusters. |
lambda_2_lars |
lambda_2-value for LARS-based Elastic Net. |
early_stop |
Logical. If TRUE, then the forward selection process is stopped after T_stop dummies have been included. Otherwise the entire solution path is computed. |
verbose |
Logical. If TRUE progress in computations is shown when performing T-LARS steps on the created model. |
intercept |
Logical. If TRUE an intercept is included. |
standardize |
Logical. If TRUE the predictors are standardized and the response is centered. |
Value
Object of the class tlars_cpp.
Examples
set.seed(123)
eps <- .Machine$double.eps
n <- 75
p <- 100
X <- matrix(stats::rnorm(n * p), nrow = n, ncol = p)
beta <- c(rep(3, times = 3), rep(0, times = 97))
y <- X %*% beta + rnorm(n)
res <- lm_dummy(X = X, y = y, T_stop = 1, num_dummies = 5 * p)
beta_hat <- res$get_beta()[seq(p)]
support <- abs(beta_hat) > eps
support