TRRsim {TRES} | R Documentation |
Generate simulation data for tensor response regression (TRR)
Description
This function is used to generate simulation data used in tensor response regression.
Usage
TRRsim(r, p, u, n)
Arguments
r |
The dimension of response, a vector with length larger than 2. |
p |
The dimension of predictor, a scale. |
u |
The structural dimension of envelopes at each mode, a vector with the same length as |
n |
The sample size. |
Details
The tensor response regression model is of the form,
Y = B \bar{\times}_{(m+1)} X + \epsilon
where predictor X \in R^{p}
, response Y \in R^{r_1\times \cdots\times r_m}
, B \in R^{r_1\times \cdots\times r_m \times p}
and the error term is tensor normal distributed as follows,
\epsilon \sim TN(0;\Sigma_1,\dots,\Sigma_m).
According to the tensor envelope structure, we have
B = [\Theta;\Gamma_1,\ldots,\Gamma_m, I_p],
\Sigma_k = \Gamma_k \Omega_k \Gamma_k^{T} + \Gamma_{0k} \Omega_{0k} \Gamma_{0k}^T,
for some \Theta \in R^{u_1\times\cdots\times u_m \times p}
, \Omega_k \in R^{u_k \times u_k}
and \Omega_{0k} \in \in R^{(p_k - u_k) \times (p_k - u_k)}
, k=1,\ldots,m
.
Value
x |
The predictor of dimension |
y |
The response of dimension |
Gamma |
The envelope subspace basis of dimension |
coefficients |
The tensor coefficients of dimension |
Sigma |
A lists of estimated covariance matrices at each mode for the error term, i.e., |
p , r , u |
The input |
Note
The length of r
must match that of u
, and each element of u
must be less than the corresponding element in r
.
References
Li, L. and Zhang, X., 2017. Parsimonious tensor response regression. Journal of the American Statistical Association, 112(519), pp.1131-1146.
See Also
Examples
r <- c(10, 10, 10)
u <- c(2, 2, 2)
p <- 5
n <- 100
dat <- TRRsim(r = r, p = p, u = u, n = n)
x <- dat$x
y <- dat$y
fit_std <- TRR.fit(x, y, method="standard")