bic.spfac {TOSI} | R Documentation |
Modified BIC criteria for selecting penalty parameters
Description
Evalute the BIC values on a set of grids of penalty parameters.
Usage
bic.spfac(X, c1.max= 10, nlamb1=10, C10=4, c2.max=10, nlamb2=10, C20=4)
Arguments
X |
a |
c1.max |
a positve scalar, the maximum of the grids of c1. |
nlamb1 |
a positive integer, the length of grids of penalty parameter lambda1. |
C10 |
a positve scalar, the penalty factor C1 of modified BIC. |
c2.max |
a positve scalar, the maximum of the grids of c2. |
nlamb2 |
a positive integer, the length of grids of penalty parameter lambda2. |
C20 |
a positve scalar, the penalty factor C2 of modified BIC. |
Value
return a list with class named pena_info
and BIC
, including following components:
lambda1.min |
a positive number, the penalty value for lambda1 corresponding to the minimum BIC on grids. |
lambda2.min |
a positive number, the penalty value for lambda2 corresponding to the minimum BIC on grids. |
bic1 |
a numeric matrix with three columns named c1, lambda1 and bic1, where each row is corresponding to each grid. |
bic2 |
a numeric matrix with three columns named c2, lambda2 and bic2, where each row is corresponding to each grid. |
Note
nothing
Author(s)
Liu Wei
References
Wei Liu, Huazhen Lin, Jin Liu (2020). Estimation and inference on high-dimensional sparse factor models.
See Also
Examples
datlist1 <- gendata_Fac(n= 100, p = 500)
X <- datlist1$X
spfac <- gsspFactorm(X, q=NULL) # use default values for lambda's.
assessBsFun(spfac$sphB, datlist1$B0)
biclist <- bic.spfac(datlist1$X, c2.max=20,nlamb1 = 10) # # select lambda's values using BIC.