RegMin {TOSI} | R Documentation |
Data splitting-based two-Stage minimum testing method for the regression coefficients in linear regression models.
Description
Conduct the simultaneous inference for a set of regression coefficients in a null hypothesises H02 that assumes the set of regression coefficients components exist zero.
Usage
RegMin(X, Y, G2, Nsplit = 5, sub.frac=0.5, alpha=0.05, seed=1, standardized=FALSE)
Arguments
X |
a |
Y |
a |
G2 |
a positive vector with values between 1 and p, the set of regression coefficients in the null hypothesises H02. |
Nsplit |
a positive integer, the random split times used, default as 5. |
sub.frac |
a positive number between 0 and 1, the proportion of the sample used in the stage I. |
alpha |
a positive real, the significance level. |
seed |
a non-negative integer, the random seed. |
standardized |
a logical value, whether standerdize the covariates matrix in the stage I. |
Value
return a vector with names 'CriticalValue', 'TestStatistic', 'reject_status', 'p-value' if Nsplit=1, and 'reject_status' and 'adjusted_p-value' if Nsplit>1.
Note
nothing
Author(s)
Liu Wei
References
Liu, W., Lin, H., Liu, J., & Zheng, S. (2020). Two-directional simultaneous inference for high-dimensional models. arXiv preprint arXiv:2012.11100.
See Also
Examples
### Example
n <- 100; p <- 20;i <- 1
s0 <- 5 # First five components are nonzeros
rho <- 1;
dat1 <- gendata_Reg(n, p, s0, seed=i, rho)
# ex1: H01 is false
RegMin(dat1$X, dat1$Y, 1:s0)
# ex1: H01 is true
RegMin(dat1$X, dat1$Y, p)