est_tlmcov {TLMoments} | R Documentation |
Estimate the covariance matrix of TL-moments estimations
Description
Internal function. Use est_cov. Description not done yet.
Usage
est_tlmcov(
x,
leftrim = 0L,
rightrim = 0L,
order = 1:3,
distr = NULL,
lambda.cov = TRUE,
ratio.cov = TRUE,
...
)
## S3 method for class 'numeric'
est_tlmcov(
x,
leftrim = 0L,
rightrim = 0L,
order = 1:3,
distr = NULL,
lambda.cov = TRUE,
ratio.cov = TRUE,
...
)
## S3 method for class 'matrix'
est_tlmcov(
x,
leftrim = 0L,
rightrim = 0L,
order = 1:3,
distr = NULL,
lambda.cov = TRUE,
ratio.cov = TRUE,
reg.weights = NULL,
...
)
## S3 method for class 'TLMoments'
est_tlmcov(
x,
leftrim = attr(x, "leftrim"),
rightrim = attr(x, "rightrim"),
order = attr(x, "order"),
distr = NULL,
lambda.cov = TRUE,
ratio.cov = TRUE,
set.n = NA,
...
)
Arguments
x |
numeric vector or matrix containing data OR an object of TLMoments. |
leftrim , rightrim |
integer indicating lower and upper trimming parameters, have to be non-negative integers. |
order |
numeric vector giving the orders that are returned (default is first three L-moments). |
distr |
character of length 1 giving the distribution if parametric assumption should be used. |
lambda.cov |
boolean, if TRUE (default) TL-moment estimation covariance matrix is calculated. |
ratio.cov |
boolean, if TRUE (default) TL-moment-ratio estimation covariance matrix is calculated. |
... |
additional arguments. |
reg.weights |
numeric vector of weights for regionalized TLMoments. |
set.n |
hypothetical data length n if theoretical values are given. |
Value
a list of numeric matrices (if lambda.cov
and ratio.cov
are TRUE (default)), or a single matrix.
Examples
### Numeric vectors
x <- rgev(500, loc = 10, scale = 5, shape = .1)
est_tlmcov(x)
est_tlmcov(x, order = 2:3)
est_tlmcov(x, rightrim = 1, order = 4:5)
# cov(t(replicate(10000,
# TLMoments(rgev(500, loc = 10, scale = 5, shape = .1))$lambdas)
# ))
# cov(t(replicate(10000,
# TLMoments(rgev(500, loc = 10, scale = 5, shape = .1))$ratios)
# ))
est_tlmcov(x, ratio.cov = FALSE)
est_tlmcov(x, lambda.cov = FALSE)
est_tlmcov(x, distr = "gev")
est_tlmcov(x, leftrim = 0, rightrim = 1)
# cov(t(replicate(10000,
# TLMoments(rgev(500, loc = 10, scale = 5, shape = .1), 0, 1, 3)$lambdas
# )))
# cov(t(replicate(10000,
# TLMoments(rgev(500, loc = 10, scale = 5, shape = .1), 0, 1, 3)$ratios
# )))
### Numeric matrices
x <- matrix(rgev(600), nc = 3)
est_tlmcov(x)
est_tlmcov(x, order = 3:4)
# cov(t(replicate(10000,
# as.vector(TLMoments(matrix(rgev(600), nc = 3))$lambdas[3:4, ])
# )))
# cov(t(replicate(10000,
# as.vector(TLMoments(matrix(rgev(600), nc = 3))$ratios[3:4, ])
# )))
est_tlmcov(x, ratio.cov = FALSE)
est_tlmcov(x, lambda.cov = FALSE)
TLMoments:::est_tlmcov(x, order = 2:3, distr = "gev")
# cov(t(replicate(10000,
# as.vector(TLMoments(matrix(rgev(600), nc = 3))$lambdas[2:3, ])
# )))
# cov(t(replicate(10000,
# as.vector(TLMoments(matrix(rgev(600), nc = 3))$ratios[2:3, ])
# )))
### TLMoments-object (theoretical calculation)
tlm <- TLMoments(as.parameters(loc = 10, scale = 5, shape = .1, distr = "gev"), 0, 1)
est_tlmcov(tlm, distr = "gev", set.n = 100)
est_tlmcov(tlm, distr = "gev", set.n = 100, ratio.cov = FALSE)
est_tlmcov(tlm, distr = "gev", set.n = 100, lambda.cov = FALSE)