cTLCAR {TLCAR} | R Documentation |
Cumulative Distribution Function (CDF) for the TLCAR Distribution
Description
Calculate the cumulative distribution at a given value using the TLCAR distribution.
Usage
cTLCAR(x, alpha, a, b, theta, m)
Arguments
x |
Value at which to calculate the CDF. |
alpha |
Parameter representing the distribution of the Topp-Leone component. |
a |
Parameter representing the scale (a) of the Cauchy component. |
b |
Parameter representing the position (b) of the Cauchy component. |
theta |
Parameter representing the scale of the Rayleigh component. |
m |
Additional parameter. |
Details
The cumulative distribution function (CDF) for the TLCAR distribution is defined as follows:
F(x)=\left[ 1-\left(\frac{1}{2}-\frac{1}{\pi}\arctan\frac{x\left(1-e^{-\frac{x^2}{2\theta^2}}+m\right) -b}{a}\right)^2\right]^\alpha
Value
Cumulative distribution at the given value.
Examples
cTLCAR(x = 1, alpha = 1, a = 1, b = 0, theta = 2, m = 0.5)
[Package TLCAR version 0.1.0 Index]