| preProcess {TIMP} | R Documentation |
Performs preprocessing on data stored as an objects of class dat.
Description
Performs data sampling, selection, baseline correction,
scaling, and data correction on an object of class dat.
Usage
preProcess(data, sample = 1, sample_time = 1, sample_lambda = 1,
sel_time = vector(), sel_lambda = vector(), baselinetime = vector(),
baselinelambda = vector(), scalx = NULL, scalx2 = NULL,
sel_lambda_ab = vector(), sel_time_ab = vector(), rm_x2=vector(),
rm_x = vector(), svdResid = list(), numV = 0, sel_special = list(),
doubleDiff = FALSE, doubleDiffFile = "doubleDiff.txt")
Arguments
data |
Object of class |
sample |
integer describing sampling interval to take in both time and
|
sample_time |
integer describing sampling interval in time; e.g.,
|
sample_lambda |
integer describing sampling interval in |
sel_time |
vector of length 2 describing the first and last time
index of data to select; e.g., |
sel_lambda |
vector of length 2 describing the first and last |
baselinetime |
a vector of form |
baselinelambda |
a vector of form |
scalx |
numeric by which to linearly scale the |
scalx2 |
vector of length 2 by which to linearly scale the
|
sel_lambda_ab |
vector of length 2 describing the absolute values
(e.g., wavelengths, wavenumbers, etc.) between which data should be
selected. e.g., |
sel_time_ab |
vector of length 2 describing the absolute times
between which data should be
selected. e.g., |
rm_x2 |
vector of |
rm_x |
vector of |
svdResid |
list returned from the |
numV |
numeric specifying how many singular vectors to use in data correction. Maximum is five. |
sel_special |
list of lists specifying |
doubleDiff |
logical indicating whether the data should be converted to represent differences between times. |
doubleDiffFile |
character string indicating the file name of
time difference data to create in the case that |
Value
object of class dat.
Author(s)
Katharine M. Mullen, Ivo H. M. van Stokkum
See Also
Examples
##############################
## READ DATA
##############################
data("target")
##############################
## PREPROCESS DATA
##############################
# select certain wavelengths for modeling
C1_1 <- preProcess(data = C1, baselinelambda = c(1,12,1,32) )
C1_1 <- preProcess(data = C1_1, sel_lambda = c(8, 27))
C1_1 <- preProcess(data = C1_1, rm_x = c(40, 41, 101, 116))
C1_1 <- preProcess(data = C1_1, sel_time_ab = c(-10, 100000))
C2_1 <- preProcess(data = C2, sel_lambda = c(2, 32))
C2_1 <- preProcess(data = C2_1, baselinelambda = c(1,12,1,32) )
C2_1 <- preProcess(data = C2_1, sel_time_ab = c(-10, 100000))
C3_1 <- preProcess(data = C3, sel_lambda = c(1, 25))
C3_1 <- preProcess(data = C3_1, baselinelambda = c(1,12,1,32) )
##############################
## SPECIFY K Matrix and J vector
##############################
## initialize 2 7x7 arrays to 0
delK <- array(0, dim=c(7,7,2))
## the matrix is indexed:
## delK[ ROW K MATRIX, COL K MATRIX, matrix number]
## in the first matrix, put the index of compartments
## that are non-zero
## the transfer rate of the compartment is governed by
## kinpar[index]
delK[1,1,1] <- 4
delK[5,1,1] <- 1
delK[2,2,1] <- 4
delK[5,2,1] <- 2
delK[3,3,1] <- 4
delK[5,3,1] <- 3
delK[4,4,1] <- 4
delK[6,5,1] <- 5
delK[7,6,1] <- 6
delK[7,7,1] <- 7
## print out the resulting array to make sure it's right
delK
jvector <- c(.48443195136500550341, .28740782363398824522,
.13749071230100625137, 0.9066953510E-01, 0, 0, 0)
datalist <- list(C1, C2, C3)
## for plotting selected traces, get a vector of all the wavenumbers
allx2 <- vector()
for(i in 1:length(datalist))
allx2 <- append(allx2,datalist[[i]]@x2)
allx2 <- sort(unique(allx2))
##############################
## SPECIFY INITIAL MODEL
## note that low is the larger wavenumber in the clpequ spec!
##############################
model1 <- initModel(mod_type = "kin",
kinpar=c( 0.13698630, 0.3448275849E-01, 0.1020408142E-01, 0.2941176528E-02,
0.17000, 0.015, 0.1074082902E-03),
fixed = list(prel = 1:6, clpequ=1:3, kinpar=1:7, irfpar=1, parmu=1),
irfpar=c(0.4211619198, 0.6299000233E-01),
prelspec = list(
list(what1="kinpar", ind1=1, what2 = "kinpar", ind2=4,
start=c(-1,0.1369863003)),
list(what1="kinpar", ind1=2, what2 = "kinpar", ind2=4,
start=c(-1,0.3448275849E-01)),
list(what1="kinpar", ind1=3, what2 = "kinpar", ind2=4,
start=c(-1,0.1020408142E-01))
),
parmu = list(c(-0.1411073953)),
lambdac = 1290,
kmat = delK,
jvec = jvector,
positivepar="kinpar",
weightpar=list( c(-20,1.4,1,2000,.2)),
clpequspec =list(
list(to=2, from=1, low=100, high=10000),
list(to=3, from=1, low=100, high=10000),
list(to=4, from=1, low=100, high=10000)),
clpequ = c(1,1,1),
cohspec = list( type = "irf"))
##############################
## GET RESID
## same format as call to fitModel, but does not plot
##############################
serResid <- getResid(list(C1_1, C2_1, C3_1), list(model1),
modeldiffs = list(thresh = 0.00005,
dscal = list(list(to=2,from=1,value=4),
list(to=3,from=1,value=0.8000000119)),
free = list(
list(what="irfpar", ind=1, start= c(0.1231127158), dataset=2),
list(what="parmu", ind=c(1,1), start= c(0.1219962388), dataset=2),
list(what="irfpar", ind=1, start= c(0.3724052608), dataset=3),
list(what="parmu", ind=c(1,1), start= c(0.8844097704E-01), dataset=3)),
change = list(
list(what="fixed", spec=list(clpequ=1:3, kinpar=1:7, irfpar=1:2,
parmu=1, drel = 1, prel=1:6), dataset=2:3))),
opt=kinopt(iter=0, title="Cosimo Spectra, Not Normalized, with Error",
stderrclp=TRUE, kinspecerr=TRUE, writespec = TRUE,
plotkinspec = TRUE,plotcohcolspec=FALSE,
selectedtraces = seq(1, length(allx2), by=2),
specinterpol = TRUE, specinterpolpoints=FALSE,
divdrel=TRUE, xlab="wavenumber",writeclperr = TRUE,
makeps = "err", linrange = 1, superimpose=1:3))
##############################
## MAKE CORRECTED DATASETS USING RESID INFO
##############################
C1_3 <- preProcess(data = C1_1, svdResid = serResid[[1]], numV = 2)
C2_3 <- preProcess(data = C2_1, svdResid = serResid[[2]], numV = 2)
C3_3 <- preProcess(data = C3_1, svdResid = serResid[[3]], numV = 2)
##############################
## FIT MODEL
##############################
serRes<-fitModel(list(C1_3, C2_3, C3_3), list(model1),
modeldiffs = list(thresh = 0.00005,
dscal = list(list(to=2,from=1,value=4),
list(to=3,from=1,value=0.8000000119)),
free = list(
list(what="irfpar", ind=1, start= c(0.1231127158), dataset=2),
list(what="parmu", ind=c(1,1), start= c(0.1219962388), dataset=2),
list(what="irfpar", ind=1, start= c(0.3724052608), dataset=3),
list(what="parmu", ind=c(1,1), start= c(0.8844097704E-01), dataset=3)),
change = list(
list(what="fixed", spec=list(clpequ=1:3, kinpar=1:7, irfpar=1:2,
parmu=1, drel = 1, prel=1:6), dataset=2:3))),
opt=kinopt(iter=0, title="Cosimo Spectra, Not Normalized, with Error",
stderrclp=TRUE, kinspecerr=TRUE, writespec = TRUE,
plotkinspec = TRUE,plotcohcolspec=FALSE, writerawcon = TRUE,
selectedtraces = seq(1, length(allx2), by=2),
specinterpol = TRUE, specinterpolpoints=FALSE,
divdrel=TRUE, xlab="wavenumber",writeclperr = TRUE,
makeps = "h20", linrange = 1, superimpose=1:3))
# end donttest
##############################
## CLEANUP GENERATED FILES
##############################
# This removes the files that were generated in this example
# (do not run this code if you wish to inspect the output)
file_list_cleanup = c('h20_paramEst.txt', 'h20_rawconcen_dataset_1.txt',
'h20_rawconcen_dataset_2.txt', 'h20_rawconcen_dataset_3.txt',
'h20_spec_dataset_1.txt', 'h20_spec_dataset_2.txt',
'h20_spec_dataset_3.txt', 'h20_std_err_clp_1.txt',
'h20_std_err_clp_2.txt', 'h20_std_err_clp_3.txt',
'err_paramEst.txt', 'err_spec_dataset_1.txt', 'err_spec_dataset_2.txt',
'err_spec_dataset_3.txt', 'err_std_err_clp_1.txt',
'err_std_err_clp_2.txt', 'err_std_err_clp_3.txt',
Sys.glob("*paramEst.txt"), Sys.glob("*.ps"), Sys.glob("Rplots*.pdf"))
# Iterate over the files and delete them if they exist
for (f in file_list_cleanup) {
if (file.exists(f)) {
unlink(f)
}
}