genTriangles {TFunHDDC} | R Documentation |
genTriangles
Description
Generate contaminated triangle data. Groups 1, 2, 3, and 4 are separable over the two dimensions of functional data. Groups 5 and 6 contain the contaminated curves of groups 1 and 3 respectively.
Usage
genTriangles()
Details
Group 1:
X_1(t) = U + (0.6 - U)H_1(t) + \epsilon_1(t)
X_2(t) = U + (0.5 - U)H_1(t) + \epsilon_1(t)
Contaminated X_1(t) = \sin(t) + (0.6 - U)H_1(t) + \epsilon_2(t)
Contaminated
X_2(t) = \sin(t) + (0.5 - U)H_1(t) + \epsilon_2(t)
Group 2:
X_1(t) = U + (0.6 - U)H_2(t) + \epsilon_1(t)
X_2(t) = U + (0.5 - U)H_2(t) + \epsilon_1(t)
Group 3:
X_1(t) = U + (0.5 - U)H_1(t) + \epsilon_1(t)
X_2(t) = U + (0.6 - U)H_2(t) + \epsilon_1(t)
Contaminated X_1(t) = \sin(t) + (0.5 - U)H_1(t) + \epsilon_3(t)
Contaminated X_2(t) = \sin(t) + (0.6 - U)H_2(t) + \epsilon_3(t)
Group 4:
X_1(t) = U + (0.5 - U)H_2(t) + \epsilon_1(t)
X_2(t) = U + (0.6 - U)H_1(t) + \epsilon_1(t).
Here t\in [1,21]
, H_1(t) = (6-\vert t-7\vert)_+
, and H_2(t) = (6-\vert t-15\vert)_+
, with (\cdot)_+
representing the positive part. U \sim \mathcal{U}(0, 0.1)
, and \epsilon_1(t)\sim N(0, 0.5)
, \epsilon_2(t)\sim N(0, 2)
, \epsilon_3(t) \sim Cauchy(0, 4)
are mutually independent white noises and independent of U
. We simulate 100 curves for each group, groups 1 and 3 consisting of 80 ordinary curves and 20 contaminated curves. Curves are smoothed using a 25 cubic B-spline basis.
Value
fd |
List of functional data objects representing the two dimensions of triangle data. |
groupd |
Group classification for each curve |
Author(s)
Cristina Anton and Iain Smith
References
- C.Bouveyron and J.Jacques (2011), Model-based Clustering of Time Series in Group-specific Functional Subspaces, Advances in Data Analysis and Classification, vol. 5 (4), pp. 281-300, <doi:10.1007/s11634-011-0095-6>
- Schmutz A, Jacques J, Bouveyron C, et al (2020) Clustering multivariate functional data in group-specific functional subspaces. Comput Stat 35:1101-1131
- Cristina Anton, Iain Smith Model-based clustering of functional data via mixtures of t
distributions. Advances in Data Analysis and Classification (to appear).
See Also
Examples
# Multivariate Contaminated Triangles
conTrig <- genTriangles()
cls = conTrig$groupd
plotTriangles(conTrig)