predict.TFRE {TFRE} | R Documentation |
Make predictions from a 'TFRE' object
Description
Make predictions for new X values from a fitted TFRE Lasso, SCAD or MCP model.
Usage
## S3 method for class 'TFRE'
predict(object, newX, s, ...)
Arguments
object |
Fitted "TFRE" model object. |
newX |
Matrix of new values for X at which predictions are to be made. |
s |
Regression model to use for prediction. Should be one of "1st" and "2nd". See more details in "Details". |
... |
Not used. Other arguments to predict. |
Details
If object$second_stage = "none"
, s
cannot be "2nd". If
object$second_stage = "none"
and s = "2nd"
, the function will
return the predictions based on the TFRE Lasso regression. If object$second_stage = "scad"
or "mcp"
, and s = "2nd"
, the function will return the predictions
based on the TFRE SCAD or MCP regression with the smallest HBIC.
Value
A vector of predictions for the new X values given the fitted TFRE model.
Author(s)
Yunan Wu and Lan Wang
Maintainer:
Yunan Wu <yunan.wu@utdallas.edu>
References
Wang, L., Peng, B., Bradic, J., Li, R. and Wu, Y. (2020), A Tuning-free Robust and Efficient Approach to High-dimensional Regression, Journal of the American Statistical Association, 115:532, 1700-1714, doi:10.1080/01621459.2020.1840989.
See Also
Examples
n <- 20; p <- 50
beta0 <- c(1.5,-1.25,1,-0.75,0.5,rep(0,p-5))
eta_list <- 0.1*6:15*sqrt(log(p)/n)
X <- matrix(rnorm(n*p),n)
y <- X %*% beta0 + rt(n,4)
newX <- matrix(rnorm(10*p),10)
Obj_TFRE_Lasso <- TFRE(X, y, second_stage = "none", const_incomplete = 5)
predict(Obj_TFRE_Lasso, newX, "1st")
predict(Obj_TFRE_Lasso, newX, "2nd")
Obj_TFRE_SCAD <- TFRE(X, y, eta_list = eta_list, const_incomplete = 5)
predict(Obj_TFRE_SCAD, newX, "1st")
predict(Obj_TFRE_SCAD, newX, "2nd")
Obj_TFRE_MCP <- TFRE(X, y, second_stage = "mcp", eta_list = eta_list, const_incomplete = 5)
predict(Obj_TFRE_MCP, newX, "1st")
predict(Obj_TFRE_MCP, newX, "2nd")