TExPosition-package {TExPosition} | R Documentation |
TExPosition: Two-table analyses with via ExPosition.
Description
TExPosition is two-table ExPosition
and includes discriminant methods of the singular value decomposition (SVD). The core of TExPosition is ExPosition
and the svd
.
Details
Package: | TExPosition |
Type: | Package |
Version: | 2.6.10 |
Date: | 2013-12-00 |
Depends: | R (>=2.15.0), prettyGraphs (>= 2.1.4), ExPosition (>= 2.0.0) |
License: | GPL-2 |
URL: | http://www.utdallas.edu/~derekbeaton/software/ExPosition |
Author(s)
Questions, comments, compliments, and complaints go to Derek Beaton exposition.software@gmail.com.
The following people are authors or contributors to TExPosition code, data, or examples:
Derek Beaton, Jenny Rieck, Cherise Chin-Fatt, Francesca Filbey, and Hervé Abdi.
References
Abdi, H., and Williams, L.J. (2010). Principal component analysis. Wiley Interdisciplinary Reviews: Computational Statistics, 2, 433-459.
Abdi, H. and Williams, L.J. (2010). Correspondence analysis. In N.J. Salkind, D.M., Dougherty, & B. Frey (Eds.): Encyclopedia of Research Design. Thousand Oaks (CA): Sage. pp. 267-278.
Abdi, H. (2007). Singular Value Decomposition (SVD) and Generalized Singular Value Decomposition (GSVD). In N.J. Salkind (Ed.): Encyclopedia of Measurement and Statistics.Thousand Oaks (CA): Sage. pp. 907-912.
Abdi, H. & Williams, L.J. (2010). Barycentric discriminant analysis (BADIA). In N.J. Salkind, D.M., Dougherty, & B. Frey (Eds.): Encyclopedia of Research Design. Thousand Oaks (CA): Sage. pp. 64-75.
Abdi, H. (2007). Discriminant correspondence analysis. In N.J. Salkind (Ed.): Encyclopedia of Measurement and Statistics. Thousand Oaks (CA): Sage. pp. 270-275.
Krishnan, A., Williams, L. J., McIntosh, A. R., & Abdi, H. (2011). Partial Least Squares (PLS) methods for neuroimaging: A tutorial and review. NeuroImage, 56(2), 455 – 475.
McIntosh, A. R., & Lobaugh, N. J. (2004). Partial least squares analysis of neuroimaging data: applications and advances. Neuroimage, 23, S250–S263.
See Also
tepBADA
, tepPLS
, tepGPLS
, tepDICA
, tepPLSCA
Examples
#For more examples, see each individual function (as noted above).