tess.PosteriorPredictiveTest {TESS} | R Documentation |
tess.PosteriorPredictiveTest: Approximation of the posterior predictive distribution.
Description
tess.PosteriorPredictiveTest computes the values of the statistic for the posterior predictive simulations and computes the p-value for the observed statistic.
Usage
tess.PosteriorPredictiveTest(samples,observation,statistic)
Arguments
samples |
Samples from the posterior predictive distribution. |
observation |
The observed value. |
statistic |
The function that computes the statistic. |
Value
Returns a list of the statistic for each sample.
Author(s)
Sebastian Hoehna
References
S. Hoehna: Fast simulation of reconstructed phylogenies under global, time-dependent birth-death processes. 2013, Bioinformatics, 29:1367-1374
Examples
# We first run an MCMC to obtain samples from the posterior distribution
# and then simulate the posterior predictive distribution.
# The bird phylogeny as the test data set
data(cettiidae)
times <- as.numeric( branching.times(cettiidae) )
# The log-likelihood function
likelihood <- function(params) {
# We use the parameters as diversification rate and turnover rate.
# Thus we need to transform first
b <- params[1] + params[2]
d <- params[2]
lnl <- tess.likelihood(times,b,d,samplingProbability=1.0,log=TRUE)
return (lnl)
}
prior_diversification <- function(x) { dexp(x,rate=0.1,log=TRUE) }
prior_turnover <- function(x) { dexp(x,rate=0.1,log=TRUE) }
priors <- c(prior_diversification,prior_turnover)
# Note, the number of iterations and the burnin is too small here
# and should be adapted for real analyses
samples <- tess.mcmc(likelihood,priors,c(1,0.1),c(TRUE,TRUE),c(0.1,0.1),10,10)
tmrca <- max(branching.times(cettiidae))
# The simulation function
sim <- function(params) {
# We use the parameters as diversification rate and turnover rate.
# Thus we need to transform first
b <- params[1] + params[2]
d <- params[2]
# We need trees with at least three tips for the gamma-statistics
repeat {
tree <- tess.sim.age(n=1,age=tmrca,b,d,samplingProbability=1.0,MRCA=TRUE)[[1]]
if (tree$Nnode > 1) break
}
return (tree)
}
# simulate trees from the posterior predictive distribution
trees <- tess.PosteriorPrediction(sim,samples)
# compute the posterior predictive test statistic
ppt <- tess.PosteriorPredictiveTest(trees,cettiidae,gammaStat)
# get the p-value of the observed test-statistic
ppt[[2]]
[Package TESS version 2.1.2 Index]