tdcm.score {TDCM} | R Documentation |
DCM scoring function.
Description
Function to score responses with fixed item parameters from a previously calibrated LCDM.
Usage
tdcm.score(
calibration.model,
newdata,
q.matrix,
attr.prob.fixed = NULL,
progress = TRUE
)
Arguments
calibration.model |
the previously calibrated model; an object of class |
newdata |
a required |
q.matrix |
a required |
attr.prob.fixed |
optional argument for attribute profile proportions. Default is uniform distribution of profiles. |
progress |
An optional logical indicating whether the function should print the progress of estimation. |
Details
Obtain classifications for new responses to items that were previously calibrated. The calibrate-and-score approach is further detailed in Madison et al. (2023).
Value
An object of class gdina
with entries as indicated in the CDM package.
References
George, A. C., Robitzsch, A., Kiefer, T., Gross, J., & Ünlü , A. (2016). The R package CDM for cognitive diagnosis models. Journal of Statistical Software, 74(2), 1-24.
Henson, R., Templin, J., & Willse, J. (2009). Defining a family of cognitive diagnosis models using log linear models with latent variables. Psychometrika, 74, 191-21.
Madison, M.J., Chung, S., Kim, J., & Bradshaw, L. (2023). Approaches to estimating longitudinal diagnostic classification models. Behaviormetrika.
Examples
## Example 1: T = 2, A = 4
data(data.tdcm01, package = "TDCM")
dat1 <- data.tdcm01$data
qmat1 <- data.tdcm01$q.matrix
pre <- dat1[, 1:20]
post <- dat1[, 21:40]
# calibrate LCDM with post-test data
m1 <- CDM::gdina(data = post, q.matrix = qmat1, linkfct = "logit", method = "ML")
# score pre-test responses
m2 <- TDCM::tdcm.score(m1, newdata = pre, q.matrix = qmat1)
summary(m2)
m2$pattern