computePL {TDAvec}R Documentation

A Vector Summary of the Persistence Landscape Function

Description

Vectorizes the persistence landscape (PL) function constructed from a given persistence diagram. The kth order landscape function of a persistence diagram D=\{(b_i,d_i)\}_{i=1}^N is defined as

\lambda_k(t) = k\hbox{max}_{1\leq i \leq N} \Lambda_i(t), \quad k\in N,

where k\hbox{max} returns the kth largest value and

\Lambda_i(t) = \left\{ \begin{array}{ll} t-b_i & \quad t\in [b_i,\frac{b_i+d_i}{2}] \\ d_i-t & \quad t\in (\frac{b_i+d_i}{2},d_i]\\ 0 & \quad \hbox{otherwise} \end{array} \right.

Usage

computePL(D, homDim, scaleSeq, k=1)

Arguments

D

matrix with three columns containing the dimension, birth and death values respectively

homDim

homological dimension (0 for H_0, 1 for H_1, etc.)

scaleSeq

numeric vector of increasing scale values used for vectorization

k

order of landscape function. By default, k=1

Value

A numeric vector whose elements are the values of the kth order landscape function evaluated at each point of scaleSeq=\{t_1,t_2,\ldots,t_n\}:

(\lambda_k(t_1),\lambda_k(t_2),\ldots,\lambda_k(t_n))

Author(s)

Umar Islambekov

References

1. Bubenik, P. (2015). Statistical topological data analysis using persistence landscapes. Journal of Machine Learning Research, 16(1), 77-102.

2. Chazal, F., Fasy, B. T., Lecci, F., Rinaldo, A., & Wasserman, L. (2014, June). Stochastic convergence of persistence landscapes and silhouettes. In Proceedings of the thirtieth annual symposium on Computational geometry (pp. 474-483).

Examples

N <- 100 
set.seed(123)
# sample N points uniformly from unit circle and add Gaussian noise
X <- TDA::circleUnif(N,r=1) + rnorm(2*N,mean = 0,sd = 0.2)

# compute a persistence diagram using the Rips filtration built on top of X
D <- TDA::ripsDiag(X,maxdimension = 1,maxscale = 2)$diagram 

scaleSeq = seq(0,2,length.out=11) # sequence of scale values

# compute persistence landscape (PL) for homological dimension H_0 with order of landscape k=1
computePL(D,homDim=0,scaleSeq,k=1)

# compute persistence landscape (PL) for homological dimension H_1 with order of landscape k=1
computePL(D,homDim=1,scaleSeq,k=1)

[Package TDAvec version 0.1.3 Index]