permutation_test {TDAstats} | R Documentation |
Statistical Inference for Topological Data Analysis
Description
Conducts a permutation test for nonparametric statistical inference of persistent homology in topological data analysis.
Usage
permutation_test(data1, data2, iterations, exponent = 1, update = 0,
...)
Arguments
data1 |
first dataset |
data2 |
second dataset |
iterations |
number of iterations for distribution in permutation test |
exponent |
parameter 'p' that returns Wasserstein-p metric |
update |
if greater than zero, will print a message every 'update' iterations |
... |
arguments for 'calculate_homology' used for each permutation; this includes the 'format', 'dim', and 'threshold' parameters |
Details
The persistent homology of two point clouds are compared with the Wasserstein metric (where Wasserstein-1 is also known as the Earth Mover's Distance). However, the magnitude of the metric for a single pair of point clouds is meaningless without a reference distribution. This function uses a permutation test (permuting the points between the two clouds) as a nonparametric hypothesis test for statistical inference.
For more details on permutation tests for statistical inference in topological data analysis, see Robinson A, Turner K. Hypothesis testing for topological data analysis. J Appl Comput Topology. 2017; 1(2): 241-261.<doi:10.1007/s41468-017-0008-7>
Value
list containing results of permutation test