fskgroups {TDAkit} | R Documentation |
k
-Groups Clustering of Multiple Functional Summaries by Energy Distance
Description
Given N
functional summaries \Lambda_1 (t), \Lambda_2 (t), \ldots, \Lambda_N (t)
,
perform k
-groups clustering by energy distance using L_2
metric.
Usage
fskgroups(fslist, k = 2, ...)
Arguments
fslist |
a length- |
k |
the number of clusters. |
... |
extra parameters including
|
Value
a length-N
vector of class labels (from 1:k
).
Examples
# ---------------------------------------------------------------------------
# K-Groups Clustering via Energy Distance
#
# We will cluster dim=0 under top-5 landscape functions with
# - Class 1 : 'iris' dataset with noise
# - Class 2 : samples from 'gen2holes()'
# - Class 3 : samples from 'gen2circles()'
# ---------------------------------------------------------------------------
## Generate Data and Diagram from VR Filtration
ndata = 10
list_rips = list()
for (i in 1:ndata){
dat1 = as.matrix(iris[,1:4]) + matrix(rnorm(150*4), ncol=4)
dat2 = gen2holes(n=100, sd=1)$data
dat3 = gen2circles(n=100, sd=1)$data
list_rips[[i]] = diagRips(dat1, maxdim=1)
list_rips[[i+ndata]] = diagRips(dat2, maxdim=1)
list_rips[[i+(2*ndata)]] = diagRips(dat3, maxdim=1)
}
## Compute Persistence Landscapes from Each Diagram with k=5 Functions
list_land0 = list()
for (i in 1:(3*ndata)){
list_land0[[i]] = diag2landscape(list_rips[[i]], dimension=0, k=5)
}
## Run K-Groups Clustering with different K's
label2 = fskgroups(list_land0, k=2)
label3 = fskgroups(list_land0, k=3)
label4 = fskgroups(list_land0, k=4)
truelab = rep(c(1,2,3), each=ndata)
## Run MDS & Visualization
embed = fsmds(list_land0, ndim=2)
opar = par(no.readonly=TRUE)
par(mfrow=c(2,2), pty="s")
plot(embed, col=truelab, pch=19, main="true label")
plot(embed, col=label2, pch=19, main="k=2 label")
plot(embed, col=label3, pch=19, main="k=3 label")
plot(embed, col=label4, pch=19, main="k=4 label")
par(opar)
[Package TDAkit version 0.1.2 Index]