fseqdist {TDAkit} | R Documentation |
Multi-sample Energy Test of Equal Distributions
Description
Also known as k
-sample problem, it tests whether multiple functional summaries
are equally distributed or not via Energy statistics.
Usage
fseqdist(fslist, label, method = c("original", "disco"), mc.iter = 999)
Arguments
fslist |
a length- |
label |
a length- |
method |
(case-sensitive) name of methods; one of |
mc.iter |
number of bootstrap replicates. |
Value
a (list) object of S3 class htest
containing:
- method
name of the test.
- statistic
a test statistic.
- p.value
p
-value underH_0
of equal distributions.
Examples
# ---------------------------------------------------------------------------
# Test for Equality of Distributions via Energy Statistics
#
# We will compare dim=0's top-5 landscape functions with
# - Class 1 : 'iris' dataset with noise
# - Class 2 : samples from 'gen2holes()'
# - Class 3 : samples from 'gen2circles()'
# ---------------------------------------------------------------------------
## Generate Data and Diagram from VR Filtration
ndata = 10
list_rips = list()
for (i in 1:ndata){
dat1 = as.matrix(iris[,1:4]) + matrix(rnorm(150*4), ncol=4)
dat2 = gen2holes(n=100, sd=1)$data
dat3 = gen2circles(n=100, sd=1)$data
list_rips[[i]] = diagRips(dat1, maxdim=1)
list_rips[[i+ndata]] = diagRips(dat2, maxdim=1)
list_rips[[i+(2*ndata)]] = diagRips(dat3, maxdim=1)
}
## Compute Persistence Landscapes from Each Diagram with k=5 Functions
list_land0 = list()
for (i in 1:(3*ndata)){
list_land0[[i]] = diag2landscape(list_rips[[i]], dimension=0, k=5)
}
## Create Label and Run the Test with Different Options
list_lab = c(rep(1,ndata), rep(2,ndata), rep(3,ndata))
fseqdist(list_land0, list_lab, method="original")
fseqdist(list_land0, list_lab, method="disco")
[Package TDAkit version 0.1.2 Index]