tam.ctt {TAM} | R Documentation |
Classical Test Theory Based Statistics and Plots
Description
The functions computes some item statistics based on classical test theory.
Usage
tam.ctt(resp, wlescore=NULL, pvscores=NULL, group=NULL, progress=TRUE)
tam.ctt2(resp, wlescore=NULL, group=NULL, allocate=30, progress=TRUE)
tam.ctt3(resp, wlescore=NULL, group=NULL, allocate=30, progress=TRUE, max_ncat=30,
pweights=NULL)
tam.cb( dat, wlescore=NULL, group=NULL, max_ncat=30, progress=TRUE,
pweights=NULL, digits_freq=5)
plotctt( resp, theta, Ncuts=NULL, ask=FALSE, col.list=NULL,
package="lattice", ... )
Arguments
resp |
A data frame with unscored or scored item responses |
wlescore |
A vector with person parameter estimates, e.g. weighted likelihood
estimates obtained from |
pvscores |
A matrix with plausible values, e.g. obtained from |
group |
Vector of group identifiers if descriptive statistics shall be groupwise calculated |
progress |
An optional logical indicating whether computation progress should be displayed. |
allocate |
Average number of categories per item. This argument is just used for matrix size allocations. If an error is produced, use a sufficiently higher number. |
max_ncat |
Maximum number of categories of variables for which frequency tables should be computed |
pweights |
Optional vector of person weights |
dat |
Data frame |
digits_freq |
Number of digits for rounding in frequency table |
theta |
A score to be conditioned |
Ncuts |
Number of break points for |
ask |
A logical which asks for changing the graphic from item to item.
The default is |
col.list |
Optional vector of colors for plotting |
package |
Package used for plotting. Can be |
... |
Further arguments to be passed. |
Details
The functions tam.ctt2
and tam.ctt3
use Rcpp code
and are slightly faster.
However, only tam.ctt
allows the input of wlescore
and
pvscores
.
Value
A data frame with following columns:
index |
Index variable in this data frame |
group |
Group identifier |
itemno |
Item number |
item |
Item |
N |
Number of students responding to this item |
Categ |
Category label |
AbsFreq |
Absolute frequency of category |
RelFreq |
Relative frequency of category |
rpb.WLE |
Point biserial correlation of an item category and the WLE |
M.WLE |
Mean of the WLE of students in this item category |
SD.WLE |
Standard deviation of the WLE of students in this item category |
rpb.PV |
Point biserial correlation of an item category and the PV |
M.PV |
Mean of the PV of students in this item category |
SD.PV |
Standard deviation of the PV of students in this item category |
Note
For dichotomously scored data, rpb.WLE
is the ordinary point biserial
correlation of an item and a test score (here the WLE).
See Also
http://www.edmeasurementsurveys.com/TAM/Tutorials/4CTT.htm
Examples
## Not run:
#############################################################################
# EXAMPLE 1: Multiple choice data data.mc
#############################################################################
data(data.mc)
# estimate Rasch model for scored data.mc data
mod <- TAM::tam.mml( resp=data.mc$scored )
# estimate WLE
w1 <- TAM::tam.wle( mod )
# estimate plausible values
set.seed(789)
p1 <- TAM::tam.pv( mod, ntheta=500, normal.approx=TRUE )$pv
# CTT results for raw data
stat1 <- TAM::tam.ctt( resp=data.mc$raw, wlescore=w1$theta, pvscores=p1[,-1] )
stat1a <- TAM::tam.ctt2( resp=data.mc$raw, wlescore=w1$theta ) # faster
stat1b <- TAM::tam.ctt2( resp=data.mc$raw ) # only frequencies
stat1c <- TAM::tam.ctt3( resp=data.mc$raw, wlescore=w1$theta ) # faster
# plot empirical item response curves
plotctt( resp=data.mc$raw, theta=w1$theta, Ncuts=5, ask=TRUE)
# use graphics for plot
plotctt( resp=data.mc$raw, theta=w1$theta, Ncuts=5, ask=TRUE, package="graphics")
# change colors
col.list <- c( "darkred", "darkslateblue", "springgreen4", "darkorange",
"hotpink4", "navy" )
plotctt( resp=data.mc$raw, theta=w1$theta, Ncuts=5, ask=TRUE,
package="graphics", col.list=col.list )
# CTT results for scored data
stat2 <- TAM::tam.ctt( resp=data.mc$scored, wlescore=w1$theta, pvscores=p1[,-1] )
# descriptive statistics for different groups
# define group identifier
group <- c( rep(1,70), rep(2,73) )
stat3 <- TAM::tam.ctt( resp=data.mc$raw, wlescore=w1$theta, pvscores=p1[,-1], group=group)
stat3a <- TAM::tam.ctt2( resp=data.mc$raw, wlescore=w1$theta, group=group)
## End(Not run)