msq.itemfit {TAM} | R Documentation |
Mean Squared Residual Based Item Fit Statistics (Infit, Outfit)
Description
The function msq.itemfit
computes computed the outfit and infit statistic
for items or item groups. Contrary to tam.fit
, the function
msq.itemfit
is not based on simulation from individual posterior distributions
but rather on evaluating the individual posterior.
The function msq.itemfit
also computes the outfit and infit statistics
but these are based on weighted likelihood estimates obtained from
tam.wle
.
Usage
msq.itemfit( object, fitindices=NULL)
## S3 method for class 'msq.itemfit'
summary(object, file=NULL, ... )
msq.itemfitWLE( tamobj, fitindices=NULL, ... )
## S3 method for class 'msq.itemfitWLE'
summary(object, file=NULL, ... )
Arguments
object |
Object for which the classes |
fitindices |
Vector with parameter labels defining the item groups for which the fit should be evaluated. |
tamobj |
Object of class |
file |
Optional name of a file to which the summary should be written |
... |
Further arguments to be passed |
Value
List with following entries
itemfit |
Data frame with outfit and infit statistics. |
summary_itemfit |
Summary statistics of outfit and infit |
See Also
See also tam.fit
for simulation based assessment of item fit.
See also eRm::itemfit
or mirt::itemfit
.
Examples
## Not run:
#############################################################################
# EXAMPLE 1: Simulated data Rasch model
#############################################################################
#*** simulate data
library(sirt)
set.seed(9875)
N <- 2000
I <- 20
b <- sample( seq( -2, 2, length=I ) )
a <- rep( 1, I )
# create some misfitting items
a[c(1,3)] <- c(.5, 1.5 )
# simulate data
dat <- sirt::sim.raschtype( rnorm(N), b=b, fixed.a=a )
#*** estimate Rasch model
mod1 <- TAM::tam.mml(resp=dat)
# compute WLEs
wmod1 <- TAM::tam.wle(mod1)$theta
#--- item fit from "msq.itemfit" function
fit1 <- TAM::msq.itemfit(mod1)
summary( fit1 )
#--- item fit using simulation in "tam.fit"
fit0 <- TAM::tam.fit( mod1 )
summary(fit0)
#--- item fit based on WLEs
fit2a <- TAM::msq.itemfitWLE( mod1 )
summary(fit2a)
#++ fit assessment in mirt package
library(mirt)
mod1b <- mirt::mirt( dat, model=1, itemtype="Rasch", verbose=TRUE )
print(mod1b)
sirt::mirt.wrapper.coef(mod1b)
fmod1b <- mirt::itemfit(mod1b, Theta=as.matrix(wmod1,ncol=1),
Zh=TRUE, X2=FALSE, S_X2=FALSE )
cbind( fit2a$fit_data, fmod1b )
#++ fit assessment in eRm package
library(eRm)
mod1c <- eRm::RM( dat )
summary(mod1c)
eRm::plotPImap(mod1c) # person-item map
pmod1c <- eRm::person.parameter(mod1c)
fmod1c <- eRm::itemfit(pmod1c)
print(fmod1c)
plot(fmod1c)
#--- define some item groups for fit assessment
# bases on evaluating the posterior
fitindices <- rep( paste0("IG",c(1,2)), each=10)
fit2 <- TAM::msq.itemfit( mod1, fitindices )
summary(fit2)
# using WLEs
fit2b <- TAM::msq.itemfitWLE( mod1, fitindices )
summary(fit2b)
#############################################################################
# EXAMPLE 2: data.read | fit statistics assessed for testlets
#############################################################################
library(sirt)
data(data.read,package="sirt")
dat <- data.read
# fit Rasch model
mod <- TAM::tam.mml( dat )
#***** item fit for each item
# based on posterior
res1 <- TAM::msq.itemfit( mod )
summary(res1)
# based on WLEs
res2 <- TAM::msq.itemfitWLE( mod )
summary(res2)
#***** item fit for item groups
# define item groups
fitindices <- substring( colnames(dat), 1, 1 )
# based on posterior
res1 <- TAM::msq.itemfit( mod, fitindices )
summary(res1)
# based on WLEs
res2 <- TAM::msq.itemfitWLE( mod, fitindices )
summary(res2)
#############################################################################
# EXAMPLE 3: Fit statistics for rater models
#############################################################################
library(sirt)
data(data.ratings2, package="sirt")
dat <- data.ratings2
# fit rater model "~ item*step + rater"
mod <- TAM::tam.mml.mfr( resp=dat[, paste0( "k",1:5) ],
facets=dat[, "rater", drop=FALSE],
pid=dat$pid, formulaA=~ item*step + rater )
# fit for parameter with "tam.fit" function
fmod1a <- TAM::tam.fit( mod )
fmod1b <- TAM::msq.itemfit( mod )
summary(fmod1a)
summary(fmod1b)
# define item groups using pseudo items from object "mod"
pseudo_items <- colnames(mod$resp)
pss <- strsplit( pseudo_items, split="-" )
item_parm <- unlist( lapply( pss, FUN=function(ll){ ll[1] } ) )
rater_parm <- unlist( lapply( pss, FUN=function(ll){ ll[2] } ) )
# fit for items with "msq.itemfit" functions
res2a <- TAM::msq.itemfit( mod, item_parm )
res2b <- TAM::msq.itemfitWLE( mod, item_parm )
summary(res2a)
summary(res2b)
# fit for raters
res3a <- TAM::msq.itemfit( mod, rater_parm )
res3b <- TAM::msq.itemfitWLE( mod, rater_parm )
summary(res3a)
summary(res3b)
## End(Not run)