IRT.truescore {TAM} | R Documentation |
Converts a \theta
Score into a True Score \tau ( \theta)
Description
Converts a \theta
score into an unweighted true score
\tau ( \theta)=\sum_i \sum_h h P_i ( \theta )
.
In addition, a weighted true score
\tau ( \theta)=\sum_i \sum_h q_{ih} P_i ( \theta )
can also be computed by specifying item-category weights
q_{ih}
in the matrix Q
.
Usage
IRT.truescore(object, iIndex=NULL, theta=NULL, Q=NULL)
Arguments
object |
Object for which the
|
iIndex |
Optional vector with item indices |
theta |
Optional vector with |
Q |
Optional weighting matrix |
Value
Data frame containing \theta
values and corresponding
true scores \tau( \theta )
.
See Also
See also sirt::truescore.irt
for a conversion function for generalized partial credit models.
Examples
#############################################################################
# EXAMPLE 1: True score conversion for a test with polytomous items
#############################################################################
data(data.Students, package="CDM")
dat <- data.Students[, paste0("mj",1:4) ]
# fit partial credit model
mod1 <- TAM::tam.mml( dat,control=list(maxiter=20) )
summary(mod1)
# true score conversion
tmod1 <- TAM::IRT.truescore( mod1 )
round( tmod1, 4 )
# true score conversion with user-defined theta grid
tmod1b <- TAM::IRT.truescore( mod1, theta=seq( -8,8, len=33 ) )
# plot results
plot( tmod1$theta, tmod1$truescore, type="l",
xlab=expression(theta), ylab=expression(tau( theta ) ) )
points( tmod1b$theta, tmod1b$truescore, pch=16, col="brown" )
## Not run:
#############################################################################
# EXAMPLE 2: True scores with different category weightings
#############################################################################
data(data.timssAusTwn.scored)
dat <- data.timssAusTwn.scored
# extract item response data
dat <- dat[, grep("M03", colnames(dat) ) ]
# select items with do have maximum score of 2 (polytomous items)
ind <- which( apply( dat, 2, max, na.rm=TRUE )==2 )
I <- ncol(dat)
# define Q-matrix with scoring variant
Q <- matrix( 1, nrow=I, ncol=1 )
Q[ ind, 1 ] <- .5 # score of 0.5 for polyomous items
# estimate model
mod1 <- TAM::tam.mml( dat, Q=Q, irtmodel="PCM2", control=list( nodes=seq(-10,10,len=61) ) )
summary(mod1)
# true score with scoring (0,1,2) which is the default of the function
tmod1 <- TAM::IRT.truescore(mod1)
# true score with user specified weighting matrix
Q <- mod1$B[,,1]
tmod2 <- TAM::IRT.truescore(mod1, Q=Q)
## End(Not run)
[Package TAM version 4.2-21 Index]