IRT.threshold {TAM} | R Documentation |
Thurstonian Thresholds and Wright Map for Item Response Models
Description
The function IRT.threshold
computes Thurstonian thresholds
for item response models. It is only based on fitted models
for which the IRT.irfprob
does exist.
The function IRT.WrightMap
creates a Wright map and works as a wrapper to the
WrightMap::wrightMap
function in
the WrightMap package. Wright maps operate
on objects of class IRT.threshold
.
Usage
IRT.threshold(object, prob.lvl=.5, type="category")
## S3 method for class 'IRT.threshold'
print(x, ...)
IRT.WrightMap(object, ...)
## S3 method for class 'IRT.threshold'
IRT.WrightMap(object, label.items=NULL, ...)
Arguments
object |
Object of fitted models for which |
prob.lvl |
Requested probability level of thresholds. |
type |
Type of thresholds to be calculated. The default is
category-wise calculation. If only one threshold per item should
be calculated, then choose |
x |
Object of class |
label.items |
Vector of item labels |
... |
Further arguments to be passed. |
Value
Function IRT.threshold
:
Matrix with Thurstonian thresholds
Function IRT.WrightMap
:
A Wright map generated by the WrightMap package.
Author(s)
The IRT.WrightMap
function is based on the
WrightMap::wrightMap
function
in the WrightMap package.
References
Ali, U. S., Chang, H.-H., & Anderson, C. J. (2015). Location indices for ordinal polytomous items based on item response theory (Research Report No. RR-15-20). Princeton, NJ: Educational Testing Service. doi:10.1002/ets2.12065
See Also
See the WrightMap::wrightMap
function in
the WrightMap package.
Examples
## Not run:
#############################################################################
# EXAMPLE 1: Fitted unidimensional model with gdm
#############################################################################
data(data.Students)
dat <- data.Students
# select part of the dataset
resp <- dat[, paste0("sc",1:4) ]
resp[ paste(resp[,1])==3,1] <- 2
psych::describe(resp)
# Model 1: Partial credit model in gdm
theta.k <- seq( -5, 5, len=21 ) # discretized ability
mod1 <- CDM::gdm( dat=resp, irtmodel="1PL", theta.k=theta.k, skillspace="normal",
centered.latent=TRUE)
# compute thresholds
thresh1 <- TAM::IRT.threshold(mod1)
print(thresh1)
IRT.WrightMap(thresh1)
#############################################################################
# EXAMPLE 2: Fitted mutidimensional model with gdm
#############################################################################
data( data.fraction2 )
dat <- data.fraction2$data
Qmatrix <- data.fraction2$q.matrix3
# Model 1: 3-dimensional Rasch Model (normal distribution)
theta.k <- seq( -4, 4, len=11 ) # discretized ability
mod1 <- CDM::gdm( dat, irtmodel="1PL", theta.k=theta.k, Qmatrix=Qmatrix,
centered.latent=TRUE, maxiter=10 )
summary(mod1)
# compute thresholds
thresh1 <- TAM::IRT.threshold(mod1)
print(thresh1)
#############################################################################
# EXAMPLE 3: Item-wise thresholds
#############################################################################
data(data.timssAusTwn.scored)
dat <- data.timssAusTwn.scored
dat <- dat[, grep("M03", colnames(dat) ) ]
summary(dat)
# fit partial credit model
mod <- TAM::tam.mml( dat )
# compute thresholds with tam.threshold function
t1mod <- TAM::tam.threshold( mod )
t1mod
# compute thresholds with IRT.threshold function
t2mod <- TAM::IRT.threshold( mod )
t2mod
# compute item-wise thresholds
t3mod <- TAM::IRT.threshold( mod, type="item")
t3mod
## End(Not run)